百度彩票

  • <tr id='Y88dT1'><strong id='Y88dT1'></strong><small id='Y88dT1'></small><button id='Y88dT1'></button><li id='Y88dT1'><noscript id='Y88dT1'><big id='Y88dT1'></big><dt id='Y88dT1'></dt></noscript></li></tr><ol id='Y88dT1'><option id='Y88dT1'><table id='Y88dT1'><blockquote id='Y88dT1'><tbody id='Y88dT1'></tbody></blockquote></table></option></ol><u id='Y88dT1'></u><kbd id='Y88dT1'><kbd id='Y88dT1'></kbd></kbd>

    <code id='Y88dT1'><strong id='Y88dT1'></strong></code>

    <fieldset id='Y88dT1'></fieldset>
          <span id='Y88dT1'></span>

              <ins id='Y88dT1'></ins>
              <acronym id='Y88dT1'><em id='Y88dT1'></em><td id='Y88dT1'><div id='Y88dT1'></div></td></acronym><address id='Y88dT1'><big id='Y88dT1'><big id='Y88dT1'></big><legend id='Y88dT1'></legend></big></address>

              <i id='Y88dT1'><div id='Y88dT1'><ins id='Y88dT1'></ins></div></i>
              <i id='Y88dT1'></i>
            1. <dl id='Y88dT1'></dl>
              1. <blockquote id='Y88dT1'><q id='Y88dT1'><noscript id='Y88dT1'></noscript><dt id='Y88dT1'></dt></q></blockquote><noframes id='Y88dT1'><i id='Y88dT1'></i>
                教育★装备采购网
                长春〒智慧学校体育论坛1180*60
                教育装备展示厅
                www.freecchost.com
                教育装备采购◤网首页 > 产品库 > 产品分类大全 > 仪器仪表 > 专用仪器设备 > 农/牧/渔仪器

                水下调制荧∩光仪Diving-PAM (调制叶绿素荧光⊙仪)

                水下调◇制荧光仪Diving-PAM (调制叶绿◣素荧光仪)
                <
                • 水下√调制荧光仪Diving-PAM (调制叶绿素荧光仪∞)
                >
                产品报价: 面议
                留言咨询
                加载中
                Diving-PAM
                上海泽泉科技有限公司
                上海
                详细说明

                 

                DIVING-PAM 全球第一款☆水∏下调制荧光仪
                Schreiber教授因发明PAM系列调制叶绿素荧光仪而获得首届国际光合作用协会(ISPR)创新奖

                1983年,WALZ公司首席科学家、德国乌兹堡大学的Ulrich Schreiber教授设计制造了全世界第一台调制荧光仪——PAM-101/102/103,并在植物生理、生态、农学、林学、水生生物学等领域得到广泛应用,出版了大量高水平研究文献。但该仪器比较笨重,不易带到野外。

                1992年,Ulrich Schreiber教授设计制造了全世界第一台便携々式调制荧光仪——PAM-2000(现已升级到PAM-2100),在此后十几年中成为全球最畅销的调制荧光仪。
                  水下︽调制荧光仪Diving-PAM (调制叶绿素荧光仪) 

                1996年,WALZ公司在浓缩PAM-2000功能的基础上,设计制造了一台更加方便携带的超便携式调制荧光仪——MINI-PAM。该仪器对PAM-2000的功能进行了浓缩㊣,更加适合野外操作,同时价格也更加便宜。

                随着水生植物和珊瑚研究越来越受到重视,人们越来越关注水下原位光合作用研究。为此,1997年,WALZ公司设ξ 计了全世界一台全防水的水下调制叶绿素荧光仪DIVING-PAM

                DIVING-PAM继承了WALZ公司PAM系列调制荧光仪的卐强大功能,可以执行MINI-PAM的所有功能,并可在水下测量PAR、温度和水深等指◤标,是一款强大的水生植物研究工具。

                水下调制荧光仪Diving-PAM (调制叶绿素荧光仪)

                利用DIVING-PAM在海底原位测量澳洲大堡礁珊瑚的光合作用


                系统描述
                DIVING-PAM全世界唯一的一款可以原位研究水下植物(大型海藻、水草、珊瑚、、“藻垫”和附着藻类等)光合作用的仪ω器,可达50米深度。它开创了在现场研究这些植物的光合作⌒用的先河。DIVING-PAM在欧洲、美国、澳洲、日本甚至是南、北极地区都有广泛应用。

                DIVING-PAM是由超便携式调制√叶绿素荧光仪MINI-PAM演化而来的,后者已被证明是野外光合作用□ 研究的强大工具。DIVING-PAM的光电元件和操作软件与MINI-PAM相同,但DIVING-PAM的外壳采用了全防水设计,特别适合水下操作。DIVING-PAM的按★键非常灵敏,在水下只需用指尖轻轻一摁即可。主机和样品之间通过非常柔软的光纤连接,有多种特制叶夹可选。

                DIVING-PAM的特点在于快速、可靠的测量光合作用光化学能量转换的实际量子产量。此外,DIVING-PAM秉承了WALZ公司PAM系列产品的¤一贯优点,通过应用调制测量光来选择性的测量活体叶绿素荧光。DIVING-PAM的操作非常简单,只需→数秒即可得到灵敏、可靠的结果。

                测量光合量子产量只需一个按键(START)操作即可,仪器会自动测量荧光产量(F)和最大荧光(Fm),并计算光合量子产量(Y=ΔF/Fm),得到的数据会在液晶显示屏上显示同时Ψ自动存储。此外DIVING-PAM还有许多模式(MODE)菜单,包括荧光淬灭分析(qP、qN和NPQ)和记录光响应曲线等,以满足用户的特殊需要。

                DIVING-PAM可以存储4000组数据,利用Windows操作软件WinControl可以进行数据▼传输、数据分析和遥控操作。

                特点
                1)MINI-PAM的水下版
                2)精巧、准确、迅速、操作简便的高级光合作用检测设备
                3)可单机操作(采用内置电脑),可连接外〖置电脑在岸/船上遥控操作(Windows操作软件WinControl)
                4)可在水下50 m工作
                5)可测量水←温和水深
                6)超便携式设计,带液晶显示屏和8个按键
                7)强大的数据收集、分析和◣存贮功能
                8)能耗低,内置锂电池可◣满足长时间野外工作需要,并可连接外◇置12 V电池,特别适合野外研究

                功能
                1)可测荧光诱导曲线并进行淬灭分析(Fo, Fm, Fv/Fm, F, Fm, ΔF/Fm’, qP, qN, NPQ, rETR等)
                2)可测光响应曲线和快速光曲线(RLC)
                3)51个内置模式菜单,方便参数设ω置和标准测量
                4)可╳在线监测水生植物、大型海藻、珊瑚、藻垫等的光合作用变化
                5)功能强大,特别适合水下操作,可潜水测量,可在岸/船上连接电脑遥√控操作
                6)利用WinControl控制时可自编程序

                应用领域
                国际上研究珊瑚、大型海藻、水草(特别是沉水植物)等的光合作用多采用这台仪器,也有人用于阴雨天气时的高等植物光合作用研究。应用领域包括植物生★理生态学、水生生物学、海洋生物学、潮间带生态学、珊瑚研究、湖泊生态学、环境科学、生态▃毒理学等。

                系统组成
                水下调制荧光仪Diving-PAM (调制叶绿素荧光仪)

                ① 微型光量子探头适配器,用于水下原位测量PAR。
                ⑵ 磁性〗样品架DIVING-MLC(可选附件),分上、下两部分,可以靠磁性夹住叶片进行暗适应。上部覆盖㊣带弹性的橡胶皮,中间开一条缝。光纤可从缝中插入,光纤插入后缝自动闭合,不会漏进环境光。
                ③ 暗适应叶夹△☉DIVING-LC(可选附件),塑料制,重量轻。也可用PAM-2100和MINI-PAM的暗适应叶夹DLC-8代替。
                ④ 暗适应适配器。光纤可深入暗适应适配器中固定好,测量时放到暗◎适应叶夹DIVING-LC的上部,打开DIVING-LC的滑片『即可。水下调制荧光仪Diving-PAM (调制叶绿素荧光仪)
                ⑤ 遮光板,装在光适应样品架DIVING-USH的底部,阻挡底部反射光。
                ⑥ 水下样品架DIVIN-USH
                全防水设计的主ㄨ机
                表面︽样品室DIVING-SH(可选附件),特别适合测量珊瑚时用。改样品室四周有4个带橡皮筋的挂钩,可以牢牢◥固定在凹凸不平的珊瑚表面。

                技术参数
                测量光
                :红色发光二极管(LED),650 nm;标准光强0.15
                μmol m-2 s-1 PAR;调制频率0.6或20 kHz,自动转换。
                光化光:卤素灯,8V/20W,蓝色增强,λ<710 nm,最大连续◣光强6000 μmol m-2 s-1 PAR。
                饱和脉冲:卤素灯,8V/20W,蓝色增强,λ<710 nm,最大饱和闪光强度18000 μmol m-2 s-1 PAR。
                信号检测:PIN-光电二极管,带短波截止滤光▲片,λ>710 nm;选择性锁↓相放大器(专利设计)。
                数据存储:CMOS RAM 128 KB,可存储4000组数据
                测量参数:Fo, Fm, Fm’, F, Fv/Fm(max. Yield), ΔF/Fm’(Yield), qP, qN, NPQ, ETR, PAR和叶温等。
                环境温度:-5~+40℃,在南、北极◣有成功应用。

                2007-200805部分文献

                [1] Belshe EF, Durako MJ, Blum JE. Diurnal light curves and landscape-scale variation in photosynthetic characteristics of Thalassia testudinum in Florida Bay Aquatic Botany 2008;89 (1):16-22.
                [2] Burghardt I, Stemmer K, Wägele H. Symbiosis between Symbiodinium (Dinophyceae) and various taxa of Nudibranchia (Mollusca: Gastropoda), with analyses of long-term retention Organisms Diversity & Evolution 2008;8 (1):66-76.
                [3] Han T, Kang S-H, Park J-S, Lee H-K, Brown MT. Physiological responses of Ulva pertusa and U. armoricana to copper exposure Aquatic Toxicology 2008;86 (2):176-84.
                [4] Hancke K, Hancke TB, Olsen LM, Johnsen G, Glud RN. Temperature effects on microalgal photosynthesis-light responses measured by O2 production, pulse-amplitude-modulated fluorescence, and 14C assimilation. Journal of Phycology 2008;44 (2):501-14.
                [5] Martínez B, Rico JM. Changes in nutrient content of Palmaria palmata in response to variable light and upwelling in Northern Spain. Journal of Phycology 2008;44 (1):50-9.
                [6] Piniak GA, Storlazzi CD. Diurnal variability in turbidity and coral fluorescence on a fringing reef flat: Southern Molokai, Hawaii Estuarine, Coastal and Shelf Science 2008;77 (1):56-64.
                [7] Saroussi S, Beer S. Alpha and quantum yield of aquatic plants derived from PAM fluorometry: Uses and misuses Aquatic Botany 2008;86 (1):89-92.
                [8] Smith-Keune C, Dove S. Gene Expression of a Green Fluorescent Protein Homolog as a Host-Specific Biomarker of Heat Stress Within a Reef-Building Coral Marine Biotechnology 2008;10 (2):166-80.
                [9] Sofonia JJ, Anthony KRN. High-sediment tolerance in the reef coral Turbinaria mesenterina from the inner Great Barrier Reef lagoon (Australia) Estuarine, Coastal and Shelf Science 2008:in press.
                [10] Bautista AIN, Jr. ON. Photoacclimation in three species of freshwater red algae Brazilian Journal of Plant Physiology 2007;19 (1):23-34.
                [11] Belshe EF, Durako MJ, Blum JE. Photosynthetic rapid light curves (RLC) of Thalassia testudinum exhibit diurnal variation Journal of Experimental Marine Biology and Ecology 2007;342 (2):253-68.
                [12] Cantin NE, Negri AP, Willis BL. Photoinhibition from chronic herbicide exposure reduces reproductive output of reef-building corals. Marine Ecology Progress Series 2007;344:81-93.
                [13] Carpenter LW, Patterson MR. Water flow influences the distribution of photosynthetic efficiency within colonies of the scleractinian coral Montastrea annularis (Ellis and Solander, 1786); implications for coral bleaching Journal of Experimental Marine Biology and Ecology 2007;351 (1-2):10-26.
                [14] Carr H, Björk M. Parallel changes in non-photochemical quenching properties, photosynthesis and D1 levels at sudden, prolonged irradiance exposures in Ulva fasciata Delile Journal of Photochemistry and Photobiology B: Biology 2007;87 (1):18-26.
                [15] Cayabyab NM, Enríquez S. Leaf photoacclimatory responses of the tropical seagrass Thalassia testudinum under mesocosm conditions: a mechanistic scaling-up study. New Phytologist 2007;176 (1):108-23.
                [16] Davison IR, Jordan TL, Fegley JC, Grobe CW. Response of Laminaria saccharina (Phaeophyta) growth and photosynthesis to simultaneous ultraviolet radiation and nitrogen limitation. Journal of Phycology 2007;43 (4):636-46.
                [17] Durako MJ. Leaf optical properties and photosynthetic leaf absorptances in several Australian seagrasses Aquatic Botany 2007;87 (1):83-9.
                [18] Ferrier-Pagès C, Richard C, Forcioli D, Allemand D, Pichon M, Shick JM. Effects of Temperature and UV Radiation Increases on the Photosynthetic Efficiency in Four Scleractinian Coral Species. Biological Bulletin 2007;213:76-87.
                [19] Fleming ED, Bebout BM, Castenholz RW. Effects of salinity and light intensity on the resumption of photosynthesis in rehydrated cyanobacterial mats from Baja California Sur, Mexico. Journal of Phycology 2007;43 (1):15-24.
                [20] Francoeur SN, Johnson AC, Kuehn KA, Neely RK. Evaluation of the efficacy of the photosystem II inhibitor DCMU in periphyton and its effects on nontarget microorganisms and extracellular enzymatic reactions. Journal of the North American Benthological Society 2007;26 (4):633-41.
                [21] Frisch AJ, Ulstrup KE, Hobbs J-PA. The effects of clove oil on coral: An experimental evaluation using Pocillopora damicornis (Linnaeus) Journal of Experimental Marine Biology and Ecology 2007;345 (2):101-9.
                [22] García-Mendoza E, Colombo-Pallotta MF. The giant kelp Macrocystis pyrifera presents a different nonphotochemical quenching control than higher plants. New Phytologist 2007;173 (3):526-36.
                [23] Garty J, Tamira TL, Lehr H. The impact of UV-B and sulphur- or copper-containing solutions in acidic conditions on chlorophyll fluorescence in selected Ramalina species Environmental Pollution 2007;145 (1):266-73.
                [24] Husband JD, Kiene RP. Occurrence of dimethylsulfoxide in leaves, stems, and roots of Spartina alterniflora. Wetlands 2007;27 (2):224-9.
                [25] Koch MS, Schopmeyer S, Kyhn-Hansen C, Madden CJ. Synergistic effects of high temperature and sulfide on tropical seagrass Journal of Experimental Marine Biology and Ecology 2007;341 (1):91-101.
                [26] Koch MS, Schopmeyer SA, Holmer M, Madden CJ, Kyhn-Hansen C. Thalassia testudinum response to the interactive stressors hypersalinity, sulfide and hypoxia. Aquatic Botany 2007;87 (2):104-10.
                [27] Koch MS, Schopmeyer SA, Kyhn-Hansen C, Madden CJ, Peters JS. Tropical seagrass species tolerance to hypersalinity stress Aquatic Botany 2007;86 (1):14-24.
                [28] Martinez MDCG, Romero PR, Banaszak AT. Photoinduced toxicity of the polycyclic aromatic hydrocarbon, fluoranthene, on the coral, Porites divaricata Journal of Environmental Science and Health 2007;42 (10):1495-502.
                [29] Matheson FE, Schwarz A-M. Growth responses of Zostera capricorni to estuarine sediment conditions Aquatic Botany 2007;87 (4):299-306.
                [30] Migné A, Gévaert F, Créach A, Spilmont N, Chevalier E, Davoult D. Photosynthetic activity of intertidal microphytobenthic communities during emersion: in situ measurements of chlorophyll fluorescence (PAR) and CO2 flux (IRGA) Journal of Phycology 2007;43 (5):864-73.
                [31] Padilla-Gamiño JL, Carpenter RC. Thermal ecophysiology of Laurencia pacifica and Laurencia nidifica (Ceramiales, Rhodophyta) from tropical and warm-temperate regions. Journal of Phycology 2007;43 (4):686-92.
                [32] Pawlik JR, Steindler L, Henkel TP, Beer S, Ilan M. Chemical warfare on coral reefs: Sponge metabolites differentially affect coral symbiosis in situ. Limnology and Oceanography 2007;52 (2):907-11.
                [33] Piniak GA. Effects of two sediment types on the fluorescence yield of two Hawaiian scleractinian corals Marine Environmental Research 2007;64 (4):456-68.
                [34] Raniello R, Mollo E, Lorenti M, Gavagnin M, Buia MC. Phytotoxic activity of caulerpenyne from the Mediterranean invasive variety of Caulerpa racemosa : a potential allelochemical Biological Invasions 2007;9 (4):361-8.
                [35] Runcie JW, Riddle MJ. Assessing the toxic effects of dissolved copper on the Antarctic macroalga Desmarestia menziesii using chlorophyll fluorescence imaging in ecotoxicological tests Toxicological & Environmental Chemistry 2007;89 (4):641-53.
                [36] Saroussi S, Beer S. Acclimations of macroalgae as reflected in photosynthetic parameters derived from PAM fluorometry, and possible implications for abundance patterns. Marine Ecology 2007;28 (3):377-83.
                [37] Sharon Y, Beer S. Diurnal movements of chloroplasts in Halophila stipulacea and their effect on PAM fluorometric measurements of photosynthetic rates Aquatic Botany 2007;88 (4):273-6.
                [38] Smith LW, Birkeland C. Effects of intermittent flow and irradiance level on back reef Porites corals at elevated seawater temperatures Journal of Experimental Marine Biology and Ecology 2007;341 (2):282-94.
                [39] Sobrino C, Neale PJ. Short-term and long-term effects of temperature on photosynthesis in the diatom Thalassiosira pseudonana under UVR exposures. Journal of Phycology 2007;43 (3):426-36.
                [40] Theil M, Westphalen G, Collings G, Cheshire A. Caulerpa taxifolia responses to hyposalinity stress Aquatic Botany 2007;87 (3):221-8.
                [41] Torregiani JH, Lesser MP. The effects of short-term exposures to ultraviolet radiation in the Hawaiian Coral Montipora verrucosa. Journal of Experimental Marine Biology and Ecology 2007;340 (2):194-203.
                [42] Van der Welle MEW, Niggebrugge K, Lamers LPM, Jan G.M. Roelofsa. Differential responses of the freshwater wetland species Juncus effusus L. and Caltha palustris L. to iron supply in sulfidic environments Environmental Pollution 2007;147 (1):222-30.
                [43] Wulff A, Zacher K, Hanelt D, Al-Handal A, Wiencke C. UV radiation - a threat to Antarctic benthic marine diatoms? Antarctic Science 2007;20:13-20.
                [44] Yokoya NS, Jr. ON, Martins AP, Gonzalez SF, Plastino EM. Growth responses and photosynthetic characteristics of wild and phycoerythrin-deficient strains of Hypnea musciformis (Rhodophyta) Journal of Applied Phycology 2007;19 (3):197-205.
                [45] 曹昀, 王国祥, 刘玉. 淹水对菖蒲萌发及幼苗生长的影响. 湖泊科学 2007;19 (5):577-84.
                [46] 李强, 王国祥, 马婷, 王文林, 潘国权. 水网藻附着对亚洲苦ω草光合特性的影响 湖泊科学 2007;19 (3):315-20.
                [47] 马婷, 王国祥, 李强, 潘国权, 王文林. 富营养化水体中菹草光合荧光特性研究. 生态环境 2007;16 (3):758-61.
                [48] 徐瑶, 王国祥, 李强. 水体浊度对苦草光合荧光特性的影响. 武汉植物学研╲究 2007;25 (1):70-4.

                 

                留言咨询
                姓名
                电话
                单位
                信箱
                留言内容
                提交留言
                联系我时,请说明是在教育装备采购网上看到的,谢谢!
                同类产品推荐