幸运pk10

  • <tr id='88zXNV'><strong id='88zXNV'></strong><small id='88zXNV'></small><button id='88zXNV'></button><li id='88zXNV'><noscript id='88zXNV'><big id='88zXNV'></big><dt id='88zXNV'></dt></noscript></li></tr><ol id='88zXNV'><option id='88zXNV'><table id='88zXNV'><blockquote id='88zXNV'><tbody id='88zXNV'></tbody></blockquote></table></option></ol><u id='88zXNV'></u><kbd id='88zXNV'><kbd id='88zXNV'></kbd></kbd>

    <code id='88zXNV'><strong id='88zXNV'></strong></code>

    <fieldset id='88zXNV'></fieldset>
          <span id='88zXNV'></span>

              <ins id='88zXNV'></ins>
              <acronym id='88zXNV'><em id='88zXNV'></em><td id='88zXNV'><div id='88zXNV'></div></td></acronym><address id='88zXNV'><big id='88zXNV'><big id='88zXNV'></big><legend id='88zXNV'></legend></big></address>

              <i id='88zXNV'><div id='88zXNV'><ins id='88zXNV'></ins></div></i>
              <i id='88zXNV'></i>
            1. <dl id='88zXNV'></dl>
              1. <blockquote id='88zXNV'><q id='88zXNV'><noscript id='88zXNV'></noscript><dt id='88zXNV'></dt></q></blockquote><noframes id='88zXNV'><i id='88zXNV'></i>
                教育装备采购网
                长春智慧学校体育︼论坛1180*60
                教育装备展示厅
                www.freecchost.com
                教育装备采购网⌒首页 > 产品库 > 产品分类大全 > 仪器仪表 > 专〖用仪器设备 > 农/牧/渔仪器

                调制荧光△成像系统 M系列IMAGING-PAM

                调制荧光成像∑ 系统 M系列IMAGING-PAM
                <
                • 调制荧光成∞像系统 M系列IMAGING-PAM
                >
                产品报价: 面议
                留言咨询
                加载中
                WALZ
                ZQ-WALZ001 (IMAGING-PAM )
                上海泽泉科∩技有限公司
                上海
                详细说明

                M系列调制叶绿素荧光成像系统IMAGING-PAM

                简便、快速、可靠、对样品无干扰
                代表了调制荧光技术的未来发展方向!
                Schreiber教授因发明PAM系列调制叶绿素【荧光仪而获得首届国际光合作用协会(ISPR)创新奖

                调制荧光成☆像系统 M系列IMAGING-PAM

                叶片被激光穿孔后NPQ信号的动态传递过程


                传统的光纤型调制荧光仪(如PAM-2100、MINI-PAM等)只能测量叶片上一个点的光合活性。利用一个点的数据代表一个叶片,利用一个叶片代表一个植株,进ζ而代表一个群体(如森林、大田作物等),这种方法①的误差是比较大的。

                从1980年代末期开始,科研人员就期望能通过成像型荧光仪来测量全〖叶片光合活性→,并进行了不懈的尝试,但受技术上的限制,所设计的仪器无法商品化或商品化了但得不到大家认可。其♀中一个很重要的原因就是能够发出饱和脉冲水平强光的二极管(LED)尚未面世。要利用调制荧光技术测量全叶片水平的光合作用,首先要保证叶片上任何Ψ一点所接受到的光强必须是完全相同的。调制荧光技术要求光源必须能发※出很强的饱和脉冲光。卤素灯能发出很强的光,但其光↙场非常不均匀,根本不能用于成像!装在一个平面上的LED阵列发出的光很均匀,但在2000年前,能发出超▓强光合有效辐射(PAR)的LED根本没有】面世!

                2000年,能发出超强PAR的蓝光LED面世。2001年,全球最权威的调制荧光仪制造商德国WALZ公司设计制造了真正的全球第一台多功能调「制荧光成像系统IMAGING-PAMIMAGING-PAM采用超强发光LED作为光源,保证叶片表明受光均¤匀且光强足够强;IMAGING-PAM采用CCD作为检测器,能检测叶片上每个像@ 素的光合作用;IMAGING-PAM秉承了WALZ公司PAM系列荧光仪的一贯优点,功能强大,测量参数多,操作极其简单,一面世就受到全球植物学家的青睐,迅速占领全球市场

                2005年,WALZ又推出了M系列IMAGING-PAM,一个主机■可以连接不同的探头(MICROSCOPY-,MICRO-,MINI-和MAXI-探头),分别在130×150 um、3.5×4.5 mm、24×32 mm或10×13 cm的面积上测量荧光成像。现在,只需一个主机连接不同的探头,即可满足从单细胞到全叶片,从分子生物学到生态学研究的全面需要


                M系列IMAGING-PAM不同版本的比较


                MAXI-版

                MINI-版

                MICRO-版

                MICROSCOPY-版

                       

                调♂制荧光成像系统 M系列IMAGING-PAM

                调制荧▅光成像系统 M系列IMAGING-PAM

                调╳制荧光成像系统 M系列IMAGING-PAM

                调制荧◥光成像系统 M系列IMAGING-PAM

                       

                调制荧光成像系●统 M系列IMAGING-PAM

                调制荧光成像系△统 M系列IMAGING-PAM

                调♀制荧光成像系统 M系列IMAGING-PAM

                调制荧光成像系统 M系列IMAGING-PAM

                       

                成像面积10×13 cm

                成像面积24×32 mm

                成像面积3.5×4.5 mm

                成像面积130×150 um

                       

                放大1.5

                放大6

                放大45

                放大130-1300


                功 能
                * 一个主机连接不同的探头可满□ 足从单细胞到全叶片、从分子生物学到生态学的不同需求
                * 全叶片光合作用分析(荧光成像),可测荧光诱导曲线◆并进行淬灭分析
                * 可测快速光响应曲线(120 s内完成,比光合放氧和气体→交换等技术快得多)
                * 叶片光合作用的横向异质性检测
                * 完全相同的条件下同时测量多●个样品(植物、地衣、苔藓、微藻等)
                * 遗传育种、突变※株筛选的强大工具
                * 不同的测量面积,不同的分辨率
                * 可利◥用多孔板(如96孔板)做多个微藻样品的同时成像
                * 胁迫损伤的早期检测
                * 不连接显微镜即可测量绿色荧光蛋白(GFP)荧光
                * 可测量叶片吸光系数
                应用范围
                * 环境科学
                * 水生卐生物学
                * 海洋与湖沼学
                * 生态毒理学
                * 园艺学
                * 农业科学
                * 林学
                * 环境科学
                * 水『生生物学
                * 海洋与湖沼学
                * 生态毒理学
                * 园艺学
                * 农业科学
                * 林学

                调制荧光成像系统 M系列IMAGING-PAM
                DCMU在叶片中的渗透过程


                测量参数
                调制荧光成像系统 M系列IMAGING-PAM

                * 以上所有参数均可成像
                * 吸光系数Abs和新参数qL、Y(NPQ)和Y(NO)的成像是IMAGING-PAM独有的
                * 生态毒理学研究中,选▓一个参考点,可以直接求出其它处理(如农药)的受抑制程度Inh.

                调制荧光成像系统 M系列IMAGING-PAM

                各种荧光参数的成像是将0.0(黑色)至1.0(紫色)的数值转换成颜色来显示的。


                 


                M系列IMAGING-PAM不同版本介绍

                 

                 

                 

                MAXI-版
                大探头,成像面积10×13 cm

                调制荧光成像系统的MAXI-探头利用300 W的LED阵列,可以在10×13 cm的面积上提供均为的调制测量光、光化光和饱和脉冲光。该探头的支架上配备特制护眼遮光罩,可以在保护眼睛的同时观测到红色荧光的●变化。

                WALZ提供两种数码相机CCD供选择。用户若需要高清晰度,推荐选择IMAG-MAX/K[2/3” chip, 1392×1040象素, 4象素组合(binning)技术]。标ζ 准应用可选择IMAG-MAX/K2(1/2”, 640×480象素),可与IMAG-MAX/K2Z物镜(F1.0/f=8-48mm)结合使用。

                调制荧光成像系统 M系列IMAGING-PAM



                调制荧光成像系统 M系列IMAGING-PAM

                调制荧光成像系统 M系列IMAGING-PAM

                调制荧光成像系统 M系列IMAGING-PAM

                调制荧光成像系统 M系列IMAGING-PAM

                测量盆栽植物

                测量离体叶片

                测量微藻样品∴

                新增镜头可调放大倍数

                       

                调制荧光成像系统 M系列IMAGING-PAM

                调制荧光成像系统 M系列IMAGING-PAM

                调制荧光成像系统 M系列IMAGING-PAM

                调制荧光成像系统 M系列IMAGING-PAM

                Y(NPQ)

                PS/50

                F

                96个微藻样品【成像



                MINI-版
                小探头,成像面积24×32 mm

                调制荧光成像系统的MINI-探头采用强大的Luxeon LED阵列,包括4组(每组3个)LED,均配有长波截止滤光片。配备8个红光(650 nm)和8个近红外(780 nm)LED,用于测量叶片吸光系数的成像。

                3种版本可选
                IMAG-MIN/B:蓝光,450 nm,测量叶片等;
                IMAG-MIN/R:红光,620 nm,测量蓝藻
                IMAG-MIN/GFP:蓝光,480 nm,测量绿色荧光蛋白(GFP)

                调制荧光成像系统 M系列IMAGING-PAM

                由于MINI-探头的※便携式设计,使其特别适合野外应用。由于MINI-探头的成像面积仅为MAXI-探头的1/16,因而前者发出的最大光强更大,但耗电却小得多。MINI-探头可以安装在光合仪GFS-3000的叶室3010-S上,同步测量全▆叶片气体交换和荧光成像,并且其光源可由GFS-3000控制,达到真正■的同步测量
                MINI-探头采用1/3”数码相机CCD(640×480象素)和F1.2/f=12mm物镜。其设计目的为测量固定距离下的荧光成像。

                调制荧光成像系统 M系列IMAGING-PAM

                调制荧光成像系统 M系列IMAGING-PAM

                调制荧光成像系统 M系列IMAGING-PAM

                调制荧光成像系统 M系列IMAGING-PAM

                与光合仪GFS-3000连用

                长时间测量可装在三角架上①

                Fm

                qN


                Micro-版
                微探头,成像面积3.5×4.5 mm

                调制荧光成像系统的MICRO-探头是一个极便携的探头,采用整合式Cosmicar-Pentax CCTV物镜(F1.4/f=16mm),直接安装在数码CCD(1/3” chip, 640×480像素)上。

                MICRO-探头只配备一个Luxeon LED(蓝光,450 nm)和一个特制双色分光镜,类似于落射荧光显微镜。

                尽管成像面积只有3.5×4.5 mm,但45倍的放大率却允许对叶片荧光成像的异质性分析达到支脉(minor veins)级。同时还可提供一个特制版本用于测量GFP的成像。

                调制荧光成像系统 M系列IMAGING-PAM


                MICRO-探头还可安装在标准版IMAGING-PAM(2001年设计)主机上。该探头◎提供X-Y轴可调的样品台。其设计目的为测量固定距离下的荧光成像。

                调制荧光成像系统 M系列IMAGING-PAM

                调制荧光成像系统 M系列IMAGING-PAM

                调制荧光成像系统 M系列IMAGING-PAM

                Fo

                GFP成像

                微探头直接安装在CCD上


                Microscopy-版
                显微探头,成像面积130×150 um

                必须与特制落射荧光显微镜(Hund或Zeiss)结合使用,该显微镜可以提供激〗发光并检测荧光

                IMAG-MAX/K(数码相机CCD)[1392×1040象素,4象素组合(binning)技术]可以提供高灵敏度。

                探头标准配置@是一个超强Luxeon LED(450-480 nm),用于提供测量光、光化光和饱和脉冲。目前已可提供RGB探头(红-绿-蓝-白LED光源),它采用了PHYTO-PAM技术,可以显微镜下自动对蓝藻、绿藻、硅/甲藻、红藻进行分类并测量光合作用。

                调制荧光成像系统 M系列IMAGING-PAM


                调制荧光成像系统 M系列IMAGING-PAM

                调制荧光成像系统 M系列IMAGING-PAM

                分类,红色为硅█藻,绿色为丝状绿藻

                光合,Fv/Fm活性,可区分细胞不同部位的活性


                部分文献
                1. Abrego D, Ulstrup KE, Willis BL, van Oppen MJH: Species–specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress Proc. R. Soc. Lond. B 2008;275:2273-2282.
                2. Abreu ME, Munné-Bosch S: Hyponastic leaf growth decreases the photoprotective demand, prevents damage to photosystem II and delays leaf senescence in Salvia broussonetii plants. Physiologia Plantarum 2008;134:369-379.
                3. Abreu ME, Munné-Bosch S: Salicylic acid may be involved in the regulation of drought-induced leaf senescence in perennials: A case study in field-grown Salvia officinalis L. plants Environmental and Experimental Botany 2008:in press.
                4. Ainsworth TD, Hoegh-Guldberg O, Heron SF, Skirving WJ, Leggat W: Early cellular changes are indicators of pre-bleaching thermal stress in the coral host Journal of Experimental Marine Biology and Ecology 2008;364:63-71.
                5. Ali NA, Juneau P, Didur O, Perreault F, Popovic R: Effect of dichromate on photosystem II activity in xanthophylldeficient mutants of Chlamydomonas reinhardtii. Photosynthesis Research 2008;95:45-53.
                6. Calatayud Á, Gorbe E, Roca D, Martínez PF: Effect of two nutrient solution temperatures on nitrate uptake, nitrate reductase activity, NH4+ concentration and chlorophyll a fluorescence in rose plants Environmental and Experimental Botany 2008:in press.
                7. Ehlert B, Hincha DK: Chlorophyll fluorescence imaging accurately quantifies freezing damage and cold acclimation responses in Arabidopsis leaves. Plant Methods 2008;4:1-7.
                8. Escher BI, Bramaz N, Mueller JF, Quayle P, Rutishauser S, Vermeirssen ELM: Toxic equivalent concentrations (TEQs) for baseline toxicity and specific modes of action as a tool to improve interpretation of ecotoxicity testing of environmental samples. Journal of Environmental Monitoring 2008;10:612-621.
                9. Escher BI, Bramaz N, Quayle P, Rutishauser S, Vermeirssen ELM: Monitoring of the ecotoxicological hazard potential by polar organic micropollutants in sewage treatment plants and surface waters using a mode-of-action based test battery. Journal of Environmental Monitoring 2008;10:622-631.
                10. Garbary DJ, Miller AG, Scrosati R, Kim K-Y, Schofield WB: Distribution and salinity tolerance of intertidal mosses from Nova Scotian salt marshes The Bryologist 2008;111:282-191.
                11. Guidi L, Degl’Innocenti E: Ozone effects on high light-induced photoinhibition in Phaseolus vulgaris Plant Science 2008;174:590-596.
                12. Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley SJ, Tedesco D, Buia M-C: Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 2008;454:96-99.
                13. Hideg É: A comparative study of fluorescent singlet oxygen probes in plant leaves Central European Journal of Biology 2008;3:272-284.
                14. Horst RJ, Engelsdorf T, Sonnewald U, Voll LM: Infection of maize leaves with Ustilago maydis prevents establishment of C4 photosynthesis. Journal of Plant Physiology 2008;165:19-28.
                15. Krupenina NA, Bulychev AA, Roelfsema MRG, Schreiber U: Action potential in Chara cells intensifies spatial patterns of photosynthetic electron flow and non-photochemical quenching in parallel with inhibition of pH banding. Photochemical & Photobiological Sciences 2008;7:681-688.
                16. Kuckenberg J, Tartachnyk I, Noga G: Evaluation of fluorescence and remission techniques for monitoring changes in peel chlorophyll and internal fruit characteristics in sunlit and shaded sides of apple fruit during shelf-life Postharvest Biology and Technology 2008;48:231-241.
                17. Lange PR, Geserick C, Tischendorf G, Zrenner R: Functions of Chloroplastic Adenylate Kinases in Arabidopsis. Plant Physiology 2008;146:492-504.
                18. Lehr N-A, Schrey SD, Hampp R, Tarkka MT: Root inoculation with a forest soil streptomycete leads to locally and systemically increased resistance against phytopathogens in Norway spruce. New Phytologist 2008;177:965-976.
                19. Liu N, Lin Z-F, Lin G-Z, Peng C-L, Pan X-P, Chen S-W: Spectral reflectance parameters and pigment functions during leaf ontogenesis in six subtropical landscape plants. Plant Growth Regulation 2008:in press.
                20. Lu Y, Savage LJ, Ajjawi I, Imre KM, Yoder DW, Benning C, DellaPenna D, Ohlrogge JB, Osteryoung KW, Weber AP, Wilkerson CG, Last RL: New Connections across Pathways and Cellular Processes: Industrialized Mutant Screening Reveals Novel Associations between Diverse Phenotypes in Arabidopsis. Plant Physiology 2008;146:1482-1500.
                21. Magnusson M, Heimann K, Negri AP: Comparative effects of herbicides on photosynthesis and growth of tropical estuarine microalgae Marine Pollution Bulletin 2008;56:1545-1552.
                22. Massacci A, Nabiev SM, Pietrosanti L, Nematov SK, Chernikova TN, Leipner KTaJ: Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging Plant Physiology and Biochemistry 2008;46:189-195.
                23. Middlebrook R, Hoegh-Guldberg O, Leggat W: The effect of thermal history on the susceptibility of reef-building corals to thermal stress. Journal of Experimental Biology 2008;211:1050-1056.
                24. Muller R, Schreiber U, Escher BI, Quayle P, Nash SMB, Mueller JF: Rapid exposure assessment of PSII herbicides in surface water using a novel chlorophyll a fluorescence imaging assay Science of The Total Environment 2008;401:1-3.
                25. Nicolaisen K, Moslavac S, Samborski A, Valdebenito M, Hantke K, Maldener I, Muro-Pastor AM, Flores E, Schleiff E: Alr0397 is an outer membrane transporter for the siderophore schizokinen in Anabaena sp. strain PCC 7120. Journal of Bacteriology 2008:in press.
                26. Pieruschka R, Chavarria-Krauser A, Cloos K, Scharr H, Schurr U, Jahnke S: Photosynthesis can be enhanced by lateral CO2 diffusion inside leaves over distances of several millimeters. New Phytologist 2008;178:335-347.
                27. Rentzou A, Psaras GK: Green plastids, maximal PSII photochemical efficiency and starch content of inner stem tissues of three Mediterranean woody species during the year Flora 2008;203:350-357.
                28. Roff G, Kvennefors ECE, Ulstrup KE, Fine M, Hoegh-Guldberg O: Coral disease physiology: the impact of Acroporid white syndrome on Symbiodinium Coral Reefs 2008;27:373-377.
                29. Roff G, Ulstrup KE, Fine M, Ralph PJ, Hoegh-Guldberg O: Spatial heterogeneity of photosynthetic activity within diseased corals from the Great Barrier Reef. Journal of Phycology 2008;44:526-538.
                30. Shao L, Shu Z, Peng C-L, Lin Z-F, Yang C-W, Gu Q: Enhanced sensitivity of Arabidopsis anthocyanin mutants to photooxidation : a study with fluorescence imaging. Functional Plant Biology 2008;35:714-724.
                31. Shaw CM, Lam PKS, Mueller JF: Photosystem II herbicide pollution in Hong Kong and its potential photosynthetic effects on corals Marine Pollution Bulletin 2008;57:473-478.
                32. 窦新永, 吴国江, 黄红英, 侯雨佳, 顾群, 彭长连: 麻枫树幼苗对干旱胁迫的响应. 应用生态学报 2008;19:1425-1430.
                33. 李芸瑛, 窦新永, 彭长连: 三种濒危木兰植物幼树光合特性对高温的响应. 生态学报 2008;28:1-9.
                34. 马守臣, 徐炳成, 李凤民, 黄占斌: 冬小麦(Triticum aestivum)分蘖冗余生态学意义以及减少冗余对水分利用效率的影响. 生态学报 2008;28:321-326.
                35. 施征, 史胜青, 肖文发, 齐力旺: 脱水胁迫对梭梭和胡杨苗叶绿素荧光特性的影响. 林业科学研究 2008;21:566-570.
                36. Guidi L, Mori S, DeglInnocenti E, Pecchiab S: Effects of ozone exposure or fungal pathogen on white lupin leaves as determined by imaging of chlorophyll a fluorescence Plant Physiology and Biochemistry 2007:in press.
                37. Hennig A, Bonfig K, Roitsch T, Warzecha H: Expression of the recombinant bacterial outer surface protein A in tobacco chloroplasts leads to thylakoid localization and loss of photosynthesis. FEBS Journal 2007;274:5749-5758.
                38. Hideg E, Kos PB, Vass I: Photosystem II damage induced by chemically generated singlet oxygen in tobacco leaves. Physiologia Plantarum 2007;131:33-40.
                39. Hideg É, Schreiber U: Parallel assessment of ROS formation and photosynthesis in leaves by fluorescence imaging. Photosynthesis Research 2007;92:103-108.
                40. Lehr NA, Schrey SD, Bauer R, Hampp R, Tarkka MT: Suppression of plant defence response by a mycorrhiza helper bacterium. New Phytologist 2007;174:892-903.
                41. Lenk S, Chaerle L, Pfündel EE, Langsdorf G, Hagenbeek D, Lichtenthaler HK, Van Der Straeten D, Buschmann C: Multispectral fluorescence and reflectance imaging at the leaf level and its possible applications. Journal of Experimental Botany 2007;58:807-814.
                42. Orth T, Reumann S, Zhang X, Fan J, Wenzel D, Quan S, Hu J: The PEROXIN11 protein family controls peroxisome proliferation in Arabidopsis. The Plant Cell 2007;19:333-350.
                43. Schreiber U, Quayle P, Schmidt S, Escher BI, Mueller JF: Methodology and evaluation of a highly sensitive algae toxicity test based on multiwell chlorophyll fluorescence imaging. Biosensors and Bioelectronics 2007:in press.
                44. Solymosi K, Vitányi B, Hideg É, Böddi B: Etiolation symptoms in Sunflower (Helianthus annuus) cotyledons partially covered by the pericarp of the Achene. Annals of Botany 2007;99:857-867.
                45. Ulstrup KE, Kühl M, Bourne DG: Zooxanthellae harvested by ciliates associated with brown band syndrome of corals remain photosynthetically competent. Applied and Environmental Microbiology 2007;73:1968-1975.
                46. 邓培雁, 刘威, 韩博平: 宝山堇菜(Viola baoshanensis)镉胁迫下的光合作用  生态学报 2007;27:1858-1862.
                47. 邓培雁, 刘威, 韩博平, 韩志国: 宝山堇菜(Viola baoshanensis)、紫花地丁(V. yedoensis)光合↘异质性比较 生态学报 2007;27:2983-2989.
                48. 邓培雁, 刘威, 韩志国: 砷胁迫下蜈蚣草光合作用的变化. 生态环境 2007;16:775-778.
                49. 高海波, 沈应柏: 用叶绿素荧光研究植物伤害信息的系统性传递. 湖北农业科学 2007;46:771-773.
                50. Aldea M, Hamilton JG, Resti JP, Zangerl AR, Berenbaum MR, Frank TD, Delucia EH: Comparison of photosynthetic damage from arthropod herbivory and pathogen infection in understory hardwood saplings. Oecologia 2006;149:221-232.
                51. Bonfig KB, Schreiber U, Gabler A, Roitsch T, Berger S: Infection with virulent and avirulent P. syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves Planta 2006;225:1-12.
                52. Dima E, Manetas Y, Psaras GK: Chlorophyll distribution pattern in inner stem tissues: evidence from epifluorescence microscopy and reflectance measurements in 20 woody species Trees 2006;20:515-521.
                53. Escher BI, Quayle P, Muller R, Schreiber U, Mueller JF: Passive sampling of herbicides combined with effect analysis in algae using a novel high-throughput phytotoxicity assay (Maxi-Imaging-PAM). Journal of Environmental Monitoring 2006;8:456-464.
                54. Heddad M, Norén H, Reiser V, Dunaeva M, Andersson B, Adamska I: Differential expression and localization of early light-induced proteins in Arabidopsis thaliana. Plant Physiology 2006:in press.
                55. Hölzl G, Witt S, Kelly AA, Zähringer U, Warnecke D, Dörmann P, Heinz E: Functional differences between galactolipids and glucolipids revealed in photosynthesis of higher plants. Proc. Natl. Acad. Sci. USA 2006;103:7512-7517.
                56. Ivanov AG, Hendrickson L, Krol M, Selstam E, Öquist G, Hurry V, Huner NPA: Digalactosyl-diacylglycerol deficiency impairs the capacity for photosynthetic intersystem electron transport and state transitions in Arabidopsis thaliana due to photosystem I acceptor-side limitations. Plant Cell and Physiology 2006;47:1146-1157.
                57. Kaiser H, Grams TEE: Rapid hydropassive opening and subsequent active stomatal closure follow heat-induced electrical signals in Mimosa pudica. Journal of Experimental Botany 2006;57:2087-2092.
                58. Kuster A, Altenburger R: Development and validation of a new fluorescence-based bioassay for aquatic macrophyte species. Chemosphere 2006;67:194-201.
                59. Lohmann A, Schottler MA, Brehelin C, Kessler F, Bock R, Cahoon EB, Dormann P: Deficiency in phylloquinone (Vitamin K1) methylation affects prenyl quinone distribution, photosystem I abundance, and anthocyanin accumulation in the Arabidopsis AtmenG mutant. Journal of Biological Chemistry 2006;281:40461-40472.
                60. Nagel KA, Schurr U, Walter A: Dynamics of root growth stimulation in Nicotiana tabacum in increasing light intensity. Plant Cell and Environment 2006;29:1936-1945.
                61. Petit A-N, Vaillant N, Boulay M, Clément C, Fontaine F: Alteration of photosynthesis in grapevines affected by esca. Phytopathology 2006;96:1060-1066.
                62. Pieruschka R, Schurr U, Jensen M, Wolff WF, Jahnke S: Lateral diffusion of CO2 from shaded to illuminated leaf parts affects photosynthesis inside homobaric leaves. New Phytologist 2006;169:779-788.
                63. Swarbrick PJ, Schulze-Lefert P, Scholes JD: Metabolic consequences of susceptibility and resistance (race-specific and broad-spectrum) in barley leaves challenged with powdery mildew. Plant Cell and Environment 2006;29:1061-1076.
                64. Vopel K, Hawes I: Photosynthetic performance of benthic microbial mats in Lake Hoare, Antarctica. Limnology and Oceanography 2006;51:1801-1812.
                65. 蔡马, 贺立红, 梁红: 2种银杏叶片叶绿素荧光特性的比较. 安徽农业科学 2006;34:3322-3324.
                66. 巩擎柱, 吕金印, 徐柄成, 李凤民, 张海波: 水分胁迫和种植方式对小麦叶绿素荧光参数及水分利用效率的影响. 西北农林科技大学学报 2006;34:83-87.
                67. 郭学民, 王贵禧, 高荣孚, 梁丽松: 果实表皮毛的扫描电镜观察及其对果实表面荧光特性的影响. 内蒙古农业大学学报 2006;27:43-47.
                68. 贺立红, 贺立静, 顾群, 梁红: 银杏同一叶片不同部位叶绿素荧光特性的研▃究. 北方园艺 2006:27-29.
                69. 贺立红, 贺立静, 梁红: 银杏↓不同品种叶绿素荧光参数的比较. 华南农业大学学报 2006;27:43-46.
                70. Aldea M, Hamilton JG, Resti JP, Zangerl AR, Berenbaum MR, Delucia EH: Indirect effects of insect herbivory on leaf gas exchange in soybean. Plant Cell and Environment 2005;28:402-411.
                71. Baek M-H, Kim J-H, Chung BY, Kim J-S, Lee IS: Alleviation of salt stress by low dose g-irradiation in rice. Biologia Plantarum 2005;49:273-276.
                72. Borisjuk L, Nguyen TH, Neuberger T, Rutten T, Tschiersch H, Claus B, Feussner I, Webb AG, Jakob P, Weber H, Wobus U, Rolletschek H: Gradients of lipid storage, photosynthesis and plastid differentiation in developing soybean seeds. New Phytologist 2005;163:761-776.
                73. Gog L, Berenbaum MR, DeLucia EH, Zangerl AR: Autotoxic effects of essential oils on photosynthesis in parsley, parsnip, and rough lemon. Chemoecology 2005;15:115-119.
                74. Kühl M, Chen M, Ralph PJ, Schreiber U, Larkum AWD: A niche for cyanobacteria containing chlorophyll d. Nature 2005;433:820.
                75. Lautner S, Grams TEE, Matyssek R, Fromm J: Characteristics of electrical signals in poplar and responses in photosynthesis. Plant Physiology 2005;138:2200-2209.
                76. Manetas Y, Pfanz H: Spatial heterogeneity of light penetration through periderm and lenticels and concomitant patchy acclimation of corticular photosynthesis Trees 2005;19:409-414.
                77. Marjanovic Z, Uwe N, Hampp R: Mycorrhiza formation enhances adaptive response of hybrid poplar to drought Annals of the New York Academy of Sciences 2005;1048:496-499.
                78. Podola B, Melkonian M: Selective real-time herbicide monitoring by an array chip biosensor employing diverse microalgae. Journal of Applied Phycology 2005;17:261-271.
                79. Ralph PJ, Macinnis-Ng CMO, Frankart C: Fluorescence imaging application: effect of leaf age on seagrass photokinetics. Aquatic Botany 2005;81:69-84.
                80. Ralph PJ, Schreiber U, Gademann R, Kühl M, Larkum AWD: Coral photobiology studied with a new imaging pulse amplitude modulated fluorometer. Journal of Phycology 2005;41:335-342.
                81. Berger S, Papadopoulos M, Schreiber U, Kaiser W, Roitsch T: Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. Physiologia Plantarum 2004;122:419-428.
                82. Hill R, Larkum AWD, Frankart C, Kühl M, Ralph PJ: Loss of functional Photosystem II reaction centres in zooxanthellae of corals exposed to bleaching conditions: using fluorescence rise kinetics. Photosynthesis Research 2004;82:59-72.
                83. Hill R, Schreiber U, Gademann R, Larkum AWD, Kühl M, Ralph PJ: Spatial heterogeneity of photosynthesis and the effect of temperature-induced bleaching conditions in three species of corals. Marine Biology 2004;144:633-640.
                84. Podola B, Nowack ECM, Melkonian M: The use of multiple-strain algal sensor chips for the detection and identification of volatile organic compounds. Biosensors and Bioelectronics 2004;19:1253-1260.
                85. Koziolek C, Grams TEE, Schreiber U, Matyssek R, Fromm J: Transient knockout of photosynthesis mediated by electrical signals. New Phytologist 2003;161:715-722.
                86. Schreiber U, Walz H, Kolbowski J: Propagation of spatial variations of chlorophyll fluorescence parameters in dandelion leaves induced by spot laser heating. PAM News 2003.

                留言咨询
                姓名
                电话
                单位
                信箱
                留言内容
                提交留言
                联系我时,请说明ξ是在教育装备采购网上看到的,谢谢!
                同类产品推荐