大小单双正规平台

  • <tr id='XlUkZZ'><strong id='XlUkZZ'></strong><small id='XlUkZZ'></small><button id='XlUkZZ'></button><li id='XlUkZZ'><noscript id='XlUkZZ'><big id='XlUkZZ'></big><dt id='XlUkZZ'></dt></noscript></li></tr><ol id='XlUkZZ'><option id='XlUkZZ'><table id='XlUkZZ'><blockquote id='XlUkZZ'><tbody id='XlUkZZ'></tbody></blockquote></table></option></ol><u id='XlUkZZ'></u><kbd id='XlUkZZ'><kbd id='XlUkZZ'></kbd></kbd>

    <code id='XlUkZZ'><strong id='XlUkZZ'></strong></code>

    <fieldset id='XlUkZZ'></fieldset>
          <span id='XlUkZZ'></span>

              <ins id='XlUkZZ'></ins>
              <acronym id='XlUkZZ'><em id='XlUkZZ'></em><td id='XlUkZZ'><div id='XlUkZZ'></div></td></acronym><address id='XlUkZZ'><big id='XlUkZZ'><big id='XlUkZZ'></big><legend id='XlUkZZ'></legend></big></address>

              <i id='XlUkZZ'><div id='XlUkZZ'><ins id='XlUkZZ'></ins></div></i>
              <i id='XlUkZZ'></i>
            1. <dl id='XlUkZZ'></dl>
              1. <blockquote id='XlUkZZ'><q id='XlUkZZ'><noscript id='XlUkZZ'></noscript><dt id='XlUkZZ'></dt></q></blockquote><noframes id='XlUkZZ'><i id='XlUkZZ'></i>
                教育装▼备采购网
                第六届图书馆论坛580*60

                LI-2100全自动真空抽提系统的海『外之旅

                教育装︼备采购网 2021-10-28 11:24 围观1830次

                  不同水体的氢氧稳定同位素可用于植物▲水分利用来源、水汽输送、土壤水运移和补给〓机制、补给源和地下水机制、水体蒸发、植物蒸腾和土壤蒸发的区分、径流的形成和汇合、重建古气候等方面的研究。因而引起了水文学家,生态学家以及气候学家等的广泛关注。但问题是:在进行水稳定同位素测试之前如何将植物木质部和ξ 土壤中的水分无分馏的提取出来?

                  LI-2100是LICA自主研发的一款全自动真空冷凝抽提系统,且已通过CE认证。从根本上解决了植物和土壤№水分提取的难题,克服了传统液氮冷却的繁琐,不仅可以防止同位素分馏,而且安全高效,不会对植物和土壤造@ 成破坏。可与LGR水同位素分析仪∩和质谱仪配套使用。许◣多科学家已经结合LI-2100和LGR的水同位素分析仪进行了诸多研究。

                  从研发生产╳至今,LI-2100在国内已经销售了近百台,国内的科研工作者利用这台仪器发表了诸多文献,得到了用户的众多好评。

                  随着LI-2100在国内的广泛应用及众多文献的发表,国外的一些科学家也开始关注理加公司研发生产的LI-2100,理加公司也积极在海外推广】该产品,由此拉开了LI-2100走出国门、走向海外的序幕。

                  LI-2100在海外的♂安装案例

                  1. 巴西国家空间研究所〇(INPE)

                  应用:利用LI-2100抽提土壤、植物】中的水,进行同位素相关研究。

                LI-2100全自⊙动真空抽提系统的海外之旅

                LI-2100全自动真空抽提系统的海外之旅

                  科学家简介:

                  Laura De Simone Borma (劳拉·德·西蒙娜·博尔玛)

                  1988 年毕业于欧鲁普雷图联邦大学土木工程专业,1991 年获★得里约热内卢联邦大学土木工程硕士学位,以及里约热内卢联邦大学土木工程-环境岩土工程博士学位(1998)。自 2009 年起在 INPE(国家空间研究所)担任研究员,从事生态水文学和土壤物理学领域的工作,重点是实地观察陆地和极端天气事件对土壤-植物-大气相互作用以及▅气候变化、土地利用和覆盖变※化的影响。她目前是 INPE 的 PGCST(地球系统科学研究生)和 PGSER(遥〓感研究生)的教授。协调 CCST/INPE 的生态水文学 (LabEcoh) 和生物地球化学 (LapBio) 实验室。她是 ISMC(国际土壤建模联盟)的成员。她对巴西不同生物群▂落中土壤-植物-大气相互作用、生态水文学以及水和气候调节的生■态系统服务领域的研究感兴趣。LI-2100在海外的安装≡案例

                  2. 澳大利亚Flinders大学 College of Science and Engineering

                  应用:利用LI-2100抽提土壤、植物中的∞水,进行同位素相关研究。

                LI-2100全自动真空抽提系统的海外之旅

                  LI-2100在国内的部分▲安装案例

                LI-2100全自动真空抽提系统的海外之旅

                  1、沈阳气象局

                  2、中国林业科学研究院亚热带林业研究所

                  3、广西植△物园

                  4、中国科学院西双版纳热带植物㊣园

                  ...

                  发表文献

                  1. Qiu X, Zhang MJ, Wang SJ. 2016. Preliminary research on hydrogen and oxygen stable isotope characteristics of different water bodies in the Qilian Mountains, northwestern Tibetan Plateau. Environmental Earth Sciences, 75(23):1491.

                  2. Wang J, Fu BJ, Lu N et al. 2017. Seasonal variation in water uptake patterns of three plant species based on stable isotopes in the semi-arid Loess Plateau. Science of the Total Environment, 609: 27-37.

                  3. Huang XY, Meyers PA. 2018. Assessing paleohydrologic controls on the hydrogen isotope compositions of leaf wax n-alkanes in Chinese peatdeposits. Palaeogeography, Palaeoclimatology, Palaeoecology, doi: 10.1016/j.palaeo.2018.12.017.

                  4. Sun L, Yang L, Chen LD et al. 2018. Short-term changing patterns of stem water isotopes in shallow soils underlain by fractured bedrock. Hydrology Research, doi: 10.2166/nh.2018.086. 

                  5. Zhang YG, YU XX, Chen LH. 2018. Comparison of the partitioning of evapotranspiration –numerical modeling with different isotopic models using various kinetic fractionation coefficients. Plant and Soil, 430: 307-328, https://doi.org/10.1007/s11104-018-3737-z. 

                  6. Zhao X, Li FD, Ai ZP et al. 2018. Stable isotope evidences for identifying crop water uptake in a typical winter wheat–summer maize rotation field in the North China Plain. Science of the Total Environment, 121-131.

                  7. Zhu G, Guo H, Qin, D et al. 2018. Contribution of recycled moisture to precipitation in the monsoon marginal zone: estimate based on stable isotope data.Journal of Hydrology, doi: 10.1016/j.jhydrol.2018.12.014. 

                  8. Che CW, Zhang MJ, Argiriou AA et al. 2019. The stable isotopic composition of different water bodies at the Soil–Plant–Atmosphere Continuum (SPAC) of the western Loess Plateau, China, Water, doi:10.3390/w11091742.

                  9. Li EG, Tong YQ, Huang YM et al. 2019. Responses of two desert riparian species to fluctuation groundwater depths in hyperarid areas of Northwest China. Ecohydrology, 1-12. 

                  10. Liu JC, Shen LC, Wang ZX et al. 2019. Response of plants water uptake patterns to tunnels excavation based on stable isotopes in a karst trough valley. Journal of Hydrology, 571: 485-493.

                  11. Liu Y, Zhang XM, Zhao S et al. 2019. The depth of water taken up by walnut trees during different phenological stages in an irrigated arid hilly area in the Taihang Mountains. Forests, doi:10.3390/f10020121.

                  12. Liu Z, Ma FY, Hu TX et al. 2019. Using stable isotopes to quantify water uptake from different soil layers and water use efficiency of wheat under long-term tillage and straw return practices. Agricultural Water Management, https://doi.org/10.1016/j.agwat.2019.105933.

                  13. Luo ZD, Guan HD, Zhang XP et al. 2019. Examination of the ecohydrological separation hypothesis in a humid subtropical area: Comparison of three methods. Journal of Hydrology, 571, 642-650.

                  14. Qiu X, Zhang MJ, Wang SJ et al. 2019. The test of the ecohydrological separation hypothesis in a dry zone of the northeastern Tibetan Plateau. Ecohydrology, https://doi.org/10.1002/eco.2077.

                  15. Qiu X, Zhang MJ, Wang SJ et al. 2019. Water stable isotopes in an Alpine setting of the northeastern Tibetan Plateau. Water, doi:10.3390/w11040770.

                  16. Wang J, Fu BJ, Lu N et al. 2019. Water use characteristics of native and exotic shrub species in the semi-arid Loess Plateau using an isotope technique.Agriculture,Ecosystems and Environment, 276: 55-63. 

                  17. Wang J, Lu N, Fu BJ. 2019. Inter-comparison of stable isotope mixing models for determining plant water source partitioning.Science of the Total Environment, 666: 685-693.

                  18. Wu X, Zheng XJ, Li Y, Xu GQ. 2019. Varying responses of two Haloxylonspecies to extreme drought and groundwater depth. Environmental and Experimental Botany, 158, 63-72.

                  19. Xu YY, Yi Y, Yang X, Dou YB. 2019. Using stable hydrogen and oxygen isotopes to distinguish the sources of plant leaf surface moisture in an urban environment. Water, doi:10.3390/w11112287.

                  20. Dai JJ, Zhang XP, Luo ZD et al. 2020. Variation of the stable isotopes of water in the soil-plant-atmosphere continuum of a Cinnamomum camphora woodland in the East Asian monsoon region.Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2020.125199

                  21. Jiang PP, Wang HM, Meinzer FC et al. 2020. Linking reliance on deep soil water to resource economy strategies and abundance among coexisting understorey shrub species in subtropical pine plantations. New Phytologist, doi: 10.1111/nph.16027. 

                  22. Liu L, Bai YX, She WW et al. 2020. A nurse shrub species helps associated herbaceous plants by preventing shade‐induced evaporation in a desert ecosystem. Land Degradation and Development, https://doi.org/10.1002/ldr.3831.

                  23. Liu Z, Ma FY, Hu TX. 2020. Using stable isotopes to quantify water uptake from different soil layers and water use efficiency of wheat under long-term tillage and straw return practices. Agricultural Water Management, https://doi.org/10.1016/j.agwat.2019.105933.

                  24. Pan YX, Wang XP, Ma XZ et al. 2020. The stable isotopic composition variation characteristics of desert plants and water sources in an artificial revegetation ecosystem in Northwest China. Catena, https://doi.org/10.1016/j.catena.2020.104499

                  25. Su PY, Zhang MJ, Qu DYet al. 2020. Contrasting water use strategies of Tamarix ramosissimain different habitats in the Northwest of Loess Plateau, China. Water, 12, 2791; doi:10.3390/w12102791. 

                  26. Wang J, Fu BJ, Wang LX et al. 2020. Water use characteristics of the common tree species in different plantation types in the Loess Plateau of China. Agricultural and Forest Meteorology, https://doi.org/10.1016/j.agrformet.2020.108020

                  27. Xiang W, Evaristo J, Li Z. 2020. Recharge mechanisms of deep soil water revealed by water isotopes in deep loess deposits. Geoderma, https://doi.org/10.1016/j.geoderma.2020.114321

                  28. Xiao X, Zhang F, Li XYet al. 2020. Hydrological functioning of thawing soil water in a permafrost-influenced alpine meadow hillslope. Vadose Zone Journal, doi: 10.1002/vzj2.20022.

                  29. Yang B, Meng XJ, Singh AK et al. 2020. Intercrops improve surface water availability in rubber-based agroforestry systems. Agriculture, Ecosystems and Environment, 298, 106937.

                  30. Yang B, Zhang WJ, Meng XJ et al. 2020. Effects of a funnel-shaped canopy on rainfall redistribution and plant water acquisition in a banana (Musa spp.) plantation. Soil, Tillage Research, https://doi.org/10.1016/j.still.2020.104686.

                  31. Yong LL, Zhu GF, Wan QZet al. 2020. The soil water evaporation process frommountains based on the stable isotope composition in a headwater basin and northwest China. Water, 12, 2711; doi:10.3390/w12102711. 

                  32. Zhang Y, Zhang MJ, Qu DY et al. 2020. Water use strategies of dominant species (Caragana korshinskii and Reaumuria soongorica) in natural shrubs based on stable isotopes in the Loess Hill, China.Water, doi:10.3390/w12071923.

                  33. Zhang YG, Wang DD, Liu ZQ et al. 2020. Assessment of leaf water enrichment of Platycladus orientalis using numerical modeling with different isotopic models. Ecological Indicators, https://doi.org/10.1016/j.ecolind.2019.105995

                  34. Li Y, Ma Y, Song XF et al. 2021. A δ2H offset correction method for quantifying root water uptake of riparian trees. Journal of Hydrology,https://doi.org/10.1016/j.jhydrol.2020.125811. 

                  35. Yang B, Meng XJ, Zhu XA et al. 2021. Coffee performs better than amomum as a candidate in the rubber agroforestry system: Insights from water relations. Agricultural Water Management, doi.org/10.1016/j.agwat.2020.106593.

                  36. Qiu X, Zhang MJ, Dong ZW et al. 2021. Contribution of recycled moisture to precipitation in northeastern Tibetan Plateau: A case study based on Bayesian estimation. Atmosphere, 12, 731. https://doi.org/10.3390/ atmos12060731.

                  37. Zhao Y, Wang L. 2021. Insights into the isotopic mismatch between bulk soil water and Salix matsudana Koidz xylem water from root water stable isotope measurements. Hydrology and Earth System Sciences, 25, 3975-3989.

                  38. Shi PJ, Huang YN, Yang CY et al. 2021. Quantitative estimation of groundwater recharge in the thick loess deposits using multiple environmental tracers and methods. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2021.126895.

                  39. Zhu GF, Yong LL, Zhang ZX et al. 2021. Infiltration process of irrigation water in oasis farmland and its enlightenment to optimization of irrigation mode: Based on stable isotope data. Agricultural Water Management, https://doi.org/10.1016/j.agwat.2021.107173.

                  40. Fang FL, Li YJ, Yuan DP et al. 2021. Distinguishing N2O and N2ratio and their microbial source in soil fertilized for vegetable production using a stable isotope method. Science of the Total Environment, https://doi.org/10.1016/j.scitotenv.2021.149694.

                  41. Wang JX, Zhang MJ, Argiriou AA et al. 2021. Recharge and infiltration mechanisms of soil water in the floodplain revealed by water-stable isotopes in the upper Yellow River.Sustainability, 13, 9369.

                  42. Zhu G F, Yong L L, Xi Z et al. 2021. Evaporation, infiltration and storage of soil water in different vegetation zones in Qilian mountains: From a perspective of stable isotopes. Hydrology and Earth System Sciences, https://doi.org/10.5194/hess-2021-376.

                  43. Qiu GY, Wang B, Li T et al. 2021. Estimation of the transpiration of urban shrubs using the modified three-dimensional three-temperature model and infrared remote sensing. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2020.125940.

                  44. Tang YK, Wang LN, Yu YQ et al. 2021. Differential response of plant water consumption to rainwater uptake for dominant tree species in the semiarid Loess Plateau. Hydrology and Earth System Sciences, https://doi.org/10.5194/hess-2021-351.

                  45. Lin W, Ding JJ, Li YJ et al. 2021. Determination of N2O reduction to N2from manure-amended soil based on isotopocule mapping and acetylene inhibition. Atmospheric Environment, https://doi.org/10.1016/j.atmosenv.2020.117913.

                  46. Liu JZ, Wu HW, Zhang HW et al. 2021. Controls of seasonality and altitude on generation of leaf water isotopes. Hydrology and Earth System Sciences, https://doi.org/10.5194/hess-2021-289.

                  47. Qin WY, Chen G, Wang P et al. 2021. Climatic and biotic influences on isotopic differences among topsoil waters in typical alpine vegetation types. Catena, https://doi.org/10.1016/j.catena.2021.105375.

                  48. Zhang X, Zhang QL, Xu ZH et al. 2021. Mechanism of environmental factors regulating water consumption of Larix gmeliniiforests. Journal of Soils and Sediments, https://doi.org/10.1007/s11368-021-03025-7.

                  49. Zhu WR, Li WH, Shi PL et al. 2021. Intensified interspecific competition for water after afforestation with Robinia pseudoacacia into a native shrubland in the Taihang Mountains, northern China. Sustainability, 13(2), 807; https://doi.org/10.3390/su13020807.

                  50. Liu ZH, Jia GD, Yu XX et al. 2021. Morphological trait as a determining factor for Populus simoniiCarr. to survive from drought in semi-arid region. Agricultural Water Management, https://doi.org/10.1016/j.agwat.2021.106943.

                  51. Zhu GF, Yong LL, Zhang ZX et al. 2021. Effects of plastic mulch on soil water migration in arid oasis farmland: Evidence of stable isotopes. Catena, https://doi.org/10.1016/j.catena.2021.105580.

                  52. Zhao Y, Wang L, Knighton J et al. 2021. Contrasting adaptive strategies by Caragana korshinskiiand Salix psammophilain a semiarid revegetated ecosystem. Agricultural and Forest Meteorology, https://doi.org/10.1016/j.agrformet.2021.108323.

                  53. Shi Y, Jia WX, Zhu GF et al. 2021. Hydrogen and oxygen isotope characteristics of water and the recharge sources in subalpine of Qilian Mountains, China. Polish Journal of Environmental Studies, 30, 3, 2325-2339.

                  54. Wu A, Behzad HM, He QF et al. 2021. Seasonal transpiration dynamics of evergreen Ligustrum lucidum linked with water source and water-use strategy in a limestone karst area, southwest China.Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2021.126199.

                  55. 周盼盼, 张明军, 王圣杰等. 2016. 兰州城区绿化植物稳定氢氧同位素特征. 生态学杂志, 35(11): 2942-2951.

                  56. 李亚飞, 于静洁, 陆凯等. 2017. 额济纳三角洲胡杨和多←枝柽柳水分来源解析. 植物生态学报, 41(5): 519-528.

                  57. 李桐, 邱国玉. 2018. 基于稳定氢氧同位素的盐水与纯水蒸发差异分析. 热带地理, 38 (6): 857-865.

                  58. 霍伟杰, 蒲俊兵, 李建鸿等. 2019. 断陷盆地高◥原面典型岩溶洼地旱季土壤水氢氧同位素时空差异特征.中国岩溶,38(3): 307-317.

                  59. 戴军杰, 章新平, 罗紫东等. 2019. 长沙地区樟树林土壤水稳定同位素特征及其对●土壤水分运动的指示. 环境Ψ科学研究,32(6): 974-983.

                  60. 胡士可和叶茂. 2020. 基于氢氧稳定同位素的柽柳水分来源分析. 广东♀农业科学, 47(2):54-60.

                  61. 李盼根, 王震洪, 李赫等. 2020. 基于稳定氢氧同位素的黄土高原不同生长年限油用牡丹水分来源研究. 水土保持通报, 40(1): 108-115.

                  62. 史佳美, 余新晓, 贾国栋等. 2020. 不同动力学分馏系数对北京山区@侧柏叶片水δ18O的模拟. 应用〒生态学报, 31(6): 1827-1834.

                  63. 苏鹏燕, 张明军, 王圣杰等. 2020. 基于氢氧稳定同位素的黄河兰州段河岸植物水分来源. 应用生态学︽报, 31(6): 1835-1843.

                  64. 孜尔蝶·巴合提, 贾国栋, 余新晓. 2020. 基于稳定同位素分析不同退化程度小叶杨水分来源. 应用╳生态学报, 31(6): 1807-1816

                  65. 王露霞, 梁杏, 李静. 2020. 基于典型钻孔的江汉平原地下水︼成因分析. 地球科学, 45(2): 701-710.

                  66. 王锐, 章新平, 戴军杰等. 2020. 亚热带地区不同林分下植物水分利用的季节差异. 生态环境学ξ 报, 29(4): 665-675.

                  67. 王锐, 章新平, 戴军杰等. 2020.亚热带典型植物水分¤利用来源变化的水稳定同位素分析. 水土保持学报, 34(1): 202-209.

                  68. 王锐, 章新平, 戴军杰等. 2020. 亚热带湿润区樟树吸水的土层来源及研究方∮法对比. 水土保持学报, 34(5): 267-276.

                  69. 郝帅和李发东. 2021. 艾比湖流域典型荒◥漠植被水分利用来源研究. 地理学报, 76(7): 1649-1661.

                  70. 李雨芊, 孟玉川, 宋泓苇等. 2021. 典型林区水分氢氧稳定同位素在土壤-植物-大气连续体中的分布特征. 应用生态学报, 32(6): 1928-1934.

                  71. 刘秀强, 陈喜, 刘琴等. 2021. 西北干旱区尾闾湖◥过渡带陆面蒸发和潜水对土壤水影响的同位素分析. 干旱区资源与环境, 35(6): 52-59.

                  72. 王家鑫,  张明军, 张宇等. 2021. 基于稳定同位素示踪的黄河兰州段河漫滩土壤水◢特征分析. 干旱区地∴理, 44(5): 1449-1458.

                  73. 王锐, 章新平, 戴军杰等. 2021.亚热带针阔混交林土壤-植物-大气连续体(SPAC)中水稳定同↘位素特征. 生态环境学报, 30(6): 1148-1157.

                  74. 王欣, 贾国栋,  邓文平等. 2021.季节性干旱地区典型树种长期水分利用特征与模式. 应用生态学报, 32(6): 1943-1950.

                  75. 武昱鑫, 张永娥, 贾国栋. 2021.基于多种同位素模型的侧柏林生态系统蒸散组分定量拆分应用生态学报, 32(6): 1971-1979.

                  76. 张泽, 孙贺阳, 李陶珂等. 2021. 拆分典》型草原群落蒸散组分方法研究. 中国草地学√报, 43(4): 87-95.

                  LI-2100特点

                  1. 沿用传统经典的真↘空蒸馏冷冻方法,数据可靠

                  2. 无需液氮:压缩机制冷,提高Ψ 安全性

                  3. 快速高效:一次可同时提取14个样品

                  4. 全自动抽提:全过程无人值守

                  5. 安全便捷:自我断→电与自我保护功能

                  6. 质量控制:故障提示与自动卐报警

                  7. 全球首创:专利技术

                  8. 氢氧稳定同〇位素前处理

                LI-2100全自动真空抽提系统的海外之旅

                  性能指标

                提取速度

                >110 个/天

                可同▅时提取样品数

                14 个

                系统真空★度

                <1000 Pa

                系统漏率

                <1 Pa/s

                抽提率

                >98%

                回收率

                99%-101%

                真空泵

                5 L/min, 24 V, 最大压力, 0.3bar

                制冷

                无需液氮,压缩机与冷阱结合,最低制冷温度可达 -95℃

                制热

                电磁制热,最高制热温度可∏达 130℃

                显示与操作

                TFT LCD (7寸, 800*480; 65536). 触摸式人机友好交互界面

                自动保护

                温度过高或超出设定温度值,加热系统自动╱关闭

                自动报警

                制冷系▃统故障提示并报警与真空泄露故障报警

                尺寸

                90 cm (H)×74 cm (W)×110 cm (D)

                重量

                120 Kg

                  LI-2100是国际上第一款全自动植物土∞壤真空抽提系统,也是国内全自动植物土壤真空抽提系统的领导品牌。LI-2100为客户取得更为准确的数据提供了有利的方⌒法和保障。理加ξ公司专注国产生态仪器的研发和生产,是国内生态领域自主研发比较早、国产化比较好的一ζ 家公司。相信随㊣着加大研发的投入和市场及时间的积累,理加公司一定会生产出更多、更好的∑生态仪器,给更多的国内外客户提供更有价值的产品。

                  海外市场的拓展不是一条容易走的路,但理加会坚定地走出去。

                点击进入北京理加联合○科技有限公司展台查看更ξ 多 来源:教育装备采╲购网 作者:北京∑ 理加联合科技有限公司 责任编辑:逯红栋 我要投稿
                普▲教会专题840*100

                相关阅读

                • 海拔5100与海拔7100水中的氘含量区别

                  海拔5100与海拔7100水中的氘含量区别
                  教育装㊣ 备采购网04-02
                  低氘水是什么水?低氘水,英文名deuteriumdepletedwater,简称DDW。在英语的语义里,叫贫氘水(氘减少的水)。据说低氘水具有活化免疫细胞、改□善机体基...
                • 新的HJ653技术规范支持光学技术

                  新的HJ653技术规范支持光学技术
                  教↓育装备采购网03-24
                  新年伊始,生态环境部修订发布了国家生态环境标准《环境空∮气颗粒物(PM10和PM2.5)连续自动监测系统技术要求及检测方法》(HJ653—2021,以下简称《HJ...
                • LICA加入碳汇与生态价值评∩估技术委员会

                  LICA加入碳汇与生态价值评估技术委员∏会
                  教育装备采购网03-10
                  “双碳”问题的起源来自于气候变化。1988年,针对气候变化々问题,世界气象组织(WMO)和联合国环境规划署(UNEP)联手成立了政府间气候变化专门委员会(IPCC...
                • 理加产品入◥选中国生态大◣讲堂受欢迎仪器

                  理〓加产品入选中国生态大讲堂受欢迎仪器
                  教育装备采购网03-01
                  2022年2月11日,中国生态大讲堂2022年春季专题研☆讨会在中国科学院地理资源所举行,来自中国科学院相关研究所、高等院校、国家部委相☉关机构、保护区等单...
                • 探究枝条与土壤水之间←的同位素失配现象

                  探究枝条与土壤水之间的同位素失配现象
                  教育装备采购网01-28
                  基◣于根系水稳定同位素探究旱柳枝条水与土壤水之间的同位素失配现▅象【摘要】越来越多的野外研究发现了植物茎干水与其潜在水源之间的同位素失配现象。然...
                • 应用Resonon高光谱成像估算积雪密度

                  应用Resonon高光谱成像估算积雪密度
                  教育装备采购网01-24
                  改进积雪密度的估计是目前雪研〖究的一个关键╱问题。表征密度时空变异性对于水当量的估算、水力发电和自然灾害(雪崩№洪水等)的评估至关重要。高光谱成像...
                • 高寒草地生态系统呼〇吸与甲烷通量研究

                  高寒草地生态系统呼吸⌒ 与甲烷通量研究
                  教育装备采购网01-18
                  西藏高寒草地生态系统呼吸与甲烷通①量的流域尺度格局及控制因素卐生态系统呼吸(Re)和甲烷(CH4)通量是两个重要的土壤-大气碳交换过程,已经在局地尺∩度...
                • LICA粉丝节正式开启!(每月11日)

                  LICA粉丝节正式开启!(每月11日)
                  教育装备采购网01-17
                  不忘初心,感恩有你!为了回馈各位粉丝的爱意,在不定时福利☆基础上,LICA新增定∏期抽奖福利,每个月11号,LICA公众号准时推送抽奖推文,记得来看▼哦↑!关...

                版权与免责声明:

                ① 凡本网注明"来源:教育装备采购网"的所有★作品,版权均属于教育装备采购〓网,未经本网授权不得转载、摘编或利用其它方式使用。已获本网授权的作品,应在授ξ权范围内使用,并注明"来源:教育装备采购网"。违者本网将追究相关法律责任。

                ② 本网凡ζ注明"来源:XXX(非本网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其〖观点和对其真实性负责,且不承担此类作品侵权行为的♀直接责任及连带责∏任。如其他媒体、网站或个人从本◤网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。

                ③ 如涉及作品内容、版权ζ 等问题,请在作品发表之日起两周内与本网联系,否则视为放弃▲相关权利。

                2022云展会300*245