一分pk10

  • <tr id='qIMfJp'><strong id='qIMfJp'></strong><small id='qIMfJp'></small><button id='qIMfJp'></button><li id='qIMfJp'><noscript id='qIMfJp'><big id='qIMfJp'></big><dt id='qIMfJp'></dt></noscript></li></tr><ol id='qIMfJp'><option id='qIMfJp'><table id='qIMfJp'><blockquote id='qIMfJp'><tbody id='qIMfJp'></tbody></blockquote></table></option></ol><u id='qIMfJp'></u><kbd id='qIMfJp'><kbd id='qIMfJp'></kbd></kbd>

    <code id='qIMfJp'><strong id='qIMfJp'></strong></code>

    <fieldset id='qIMfJp'></fieldset>
          <span id='qIMfJp'></span>

              <ins id='qIMfJp'></ins>
              <acronym id='qIMfJp'><em id='qIMfJp'></em><td id='qIMfJp'><div id='qIMfJp'></div></td></acronym><address id='qIMfJp'><big id='qIMfJp'><big id='qIMfJp'></big><legend id='qIMfJp'></legend></big></address>

              <i id='qIMfJp'><div id='qIMfJp'><ins id='qIMfJp'></ins></div></i>
              <i id='qIMfJp'></i>
            1. <dl id='qIMfJp'></dl>
              1. <blockquote id='qIMfJp'><q id='qIMfJp'><noscript id='qIMfJp'></noscript><dt id='qIMfJp'></dt></q></blockquote><noframes id='qIMfJp'><i id='qIMfJp'></i>
                教育装备采购网
                长春智慧学校体育论坛1180*60
                教育装备展示厅
                www.freecchost.com
                教育装备采购网首页 > 产品分类大全 > 产品库 > 仪器仪表 > 光学仪器 > 显微镜

                超高速视频级原子力显微镜HS-AFM

                超高速视频级原子力显微镜HS-AFM
                <
                • 超高速视频级原子力显微镜HS-AFM
                >
                产品报价: 面议
                留言咨询
                加载中
                RIBM
                HS-AFM
                高教
                日本
                详细说明

                HS-AFM 超高速视频级原子力显微镜

                  

                产品简介:

                  超高速视频级原子力显微镜(Sample-Scanning High-Speed Atomic Force Microscope ,HS-AFM SS-NEX)是由日本 Kanazawa 大学 Prof. Ando 教授团队研发的,也是世界上第一台可以达到视频级成像的商业化原子力显微镜。HS-AFM突破了传统原子力显微镜“扫描成像速慢”的限制,能够实现在液体环境下超快速动态成像,分辨率为纳米水平。样品无需特殊固定,不影响生物分子的活性,尤其适用于生物大分子互作动态观测。推出至今,全球已有80多位用户,发表 SCI 文章 200 余篇,包括Science, Nature, Cell 等顶级杂志。

                技术特征:

                扫描速度快

                探针小,适用于生物样品

                自动校正,适合长时间测样

                ◆ 扫描速度最高可达 20 frame/s

                ◆ 有 4 种扫描台可供选择

                ◆ 悬臂探针共振频率高,弹簧系

                数小。避免了对生物样品等的损伤

                ◆ 悬臂探针可自动漂移校准,

                适用于长时间观测。


                技术原理:

                超高速视频级原子力显微镜HS-AFM

                超高速视频级原子力显微镜应用领域:

                  应用包括:利用 HS-AFM可在纳米尺度动态实时记录生物大分子的运动以及分子间相互作用,包括:

                超高速视频级原子力显微镜HS-AFM

                超高速视频级原子力显微镜HS-AFM

                超高速视频级原子力显微镜HS-AFM

                超高速视频级原子力显微镜HS-AFM

                walking myosin V

                实时观察

                dendrite growth in

                neuron 实时观察

                rotorless F1-ATPase

                实时观察

                light response for D69N

                实时观察

                超高速视频级原子力显微镜HS-AFM

                超高速视频级原子力显微镜HS-AFM

                超高速视频级原子力显微镜HS-AFM

                超高速视频级原子力显微镜HS-AFM

                IgG antibody

                150nm * 150nm

                plasmid DNA

                250nm * 250nm

                myosinⅡ

                500nm * 500nm

                bacteriorhodopsin

                40nm * 40nm

                超高速视频级原子力显微镜HS-AFM

                超高速视频级原子力显微镜HS-AFM

                超高速视频级原子力显微镜HS-AFM

                超高速视频级原子力显微镜HS-AFM

                lipid membrane

                3500nm * 3500nm

                350nm poly beads

                900nm * 900nm

                E.coli

                3000nm * 3000nm

                350nm poly beads

                3000nm * 3000nm

                  

                超高速视频级原子力显微镜相关应用案例:

                  1.Video imaging of walking myosin V 实时观察myosin V蛋白的运动

                N. Kodera et al.Nature468, 72 (2010). Kanazawa University

                  2.Real-space and real-time dynamics of CRISPR-Cas9 实时显示CRISPR基因编辑

                Mikihiro et al.NatureCommunications, (2017). Kanazawa University

                  

                设备规格及参数:

                标准配置

                扫描速度 scan speed

                50 ms/frame (20 frames/sec)

                压电扫描器 piezo range

                X: 0.7µm, Y:0.7µm, Z: 0.4µm

                样品大小 sample size

                1.5mm in diameter

                扫描环境 environment

                In liquid/In air

                控制系统 control system

                PID control, Dynamic PID control

                significant Function

                Scanner active dumping,Drift correction for cantilever excitation

                可选配置

                光照装置

                Light irradiation Unit

                Light irradiation unit for the experiments with caged

                compounds. Variable wavelength: 350-560nm

                宽扫描台

                wide scanner

                1frames/s;XY:4µm×4µm, Z:0.7µm

                超宽扫描台Amplified

                ultra wider scanner

                0.1frames/s;XY:30µm×30µm, Z:1.2µm

                微流控系统

                Circulation unit

                The observation solutions can be exchanged while

                continuing AFM observation.

                  

                已发表文献(2017年):

                1. Ando T.; "Directly watching biomolecules in action by high-speed atomic force microscopy"; Biophys. Rev. (2017)

                2. Ando T.; "High-speed Atomic Force Microscopy for Observing Protein Molecules in Dynamic Action", Proceedings of SPIE 10328, Selected Papers from the 31st International Congress on High-Speed Imaging and Photonics (2017)

                3. Aybeke E., Belliot G., Lemaire‐Ewing S., Estienney M., Lacroute Y., Pothier P., Bourillot E., Lesniewska, E.; "HS‐AFM and SERS Analysis of Murine Norovirus Infection: Involvement of the Lipid Rafts";Small13 1 (2017)

                4.Cai W, Liu Z., Chen Y., Shang G.; "A Mini Review of the Key Components used for the Development of High-Speed Atomic Force Microscopy"; Science of Advanced MaterialsVol. 9 Numb. 1 (2017) p.77-88

                5.Colom A., Redondo-Morata L., Chiaruttini N., Roux A., Scheuring S.; "Dynamic remodeling of the dynamin helix during membrane constriction"; Proceedings of the National Academy of Sciences114 21 (2017)

                6.Dufrêne Y., Ando T., Garcia R., Alsteens D., Martinez-Martin D., Engel A., Gerber Ch., Müller D.; "Imaging modes of atomic force microscopy for application of molecular and cell biology"; Nat. Nanotechnol. 12 (2017) p.295-307

                7.Harada H., Onoda A., Uchihashi T., Watanabe H., Sunagawa N., Samejima M., Igarashi K., Hayashi T.; "Interdomain flip-flop motion visualized in flavocytochrome cellobiose dehydrogenase using high-speed atomic force microscopy during catalysis"; Chemical Science(2017)

                8.Karner A., Nimmervoll B., Plochberger B., Klotzsch E., Horner A., Knyazev D., Kuttner R., Winkler K., Winter L., Siligan Ch., Ollinger N., Pohl P., Preiner J.; "Tuning membrane protein mobility by confinement into nanodomains";Nature Nanotechnology12 3 (2017) p.260-266

                9.Keya J., Inoue D., Suzuki Y., Kozai T., Ishikuro D., Kodera N., Uchihashi T., Kabir A., Endo M., Sada K., Kakugo A.; "High-Resolution Imaging of a Single Gliding Protofilament of Tubulins by HS-AFM" ; Scientific Reports7 1 (2017)

                10. Kim Y.; "An Advanced Characterization Method for the Elastic Modulus of Nanoscale Thin-Films Using a High-Frequency Micromechanical Resonator"; Materials10 7 (2017)

                11.Kim Y.; "An evaluation technique for high-frequency dynamic behavior of a sandwich microcantilever beam"; Journal of Sandwich Structures & Materials(2017)

                12.Korolkov V., Baldoni M., Watanabe K., Taniguchi T., Besley E., Beton P.; "Supramolecular heterostructures formed by sequential epitaxial deposition of two-dimensional hydrogen-bonded arrays"; Nature Chemistry(2017)

                13.Legrand B., Salvetat J.-P., Walter B., Faucher M., Théron D., Aimé J.-P.; "Multi-MHz micro-electro-mechanical sensors for atomic force microscopy"; Ultramicroscopy175 (2017) p.46-57

                14.Liao H.-S., Chih-Wen Yang, Hsien-Chen Ko, En-Te Hwu, Ing-Shouh Hwang; "Imaging initial formation processes of nanobubbles at the graphite–water interface through high-speed atomic force microscopy"; Applied Surface Science(2017)

                15.Matsui S., Kureha T., Hiroshige S., Shibata M., Uchihashi T., Suzuki D.; "Fast Adsorption of Soft Hydrogel Microspheres on Solid Surfaces in Aqueous Solution"; Angewandte Chemie(2017)

                16.Mierzwa B., Chiaruttini N., Redondo-Morata L., Moser von Filseck J., König J., Larios J., Poser I., Müller-Reichert T., Scheuring S., Roux A., Gerlich D.; "Dynamic subunit turnover in ESCRT-III assemblies is regulated by Vps4 to mediate membrane remodeling during cytokinesis"; Nature Cell Biology(2017)

                17.Miyata K., Tracey J., Miyazawa K., Haapasilta V., Spijker P., Kawagoe Y., Foster A., Tsukamoto K., Fukuma T.; "Dissolution Processes at Step Edges of Calcite in Water Investigated by High-Speed Frequency Modulation Atomic Force Microscopy and Simulation"; Nano Lett.17 7 (2017) p.4083-4089

                18.Miyazawa K., Watkins M., Shluger A., Fukuma T.; "Influence of ions on two-dimensional and three-dimensional atomic force microscopy at fluorite–water interfaces"; NanotechnologyVol. 28 Numb. 24 (2017)

                19.Mohamed M., Kobayashi A., Taoka A., Watanabe-Nakayama T., Kikuchi Y., Hazawa M., Minamoto T., Fukumori Y., Kodera N., Uchihashi T., Ando T., Wong R.; "High-Speed Atomic Force Microscopy Reveals Loss of Nuclear Pore Resilience as a Dying Code in Colorectal Cancer Cells"; ACS Nano11 6 (2017) p.5567-5578

                20.Nievergelt A., Andany S., Adams J., Hannebelle M., Fantner G.; "Components for high-speed atomic force microscopy optimized for low phase-lag"; Proceedings of 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM) (2017)

                21. Rangl M., Rima L., Klement J., Miyagi A., Keller S., Scheuring S.; "Real-time Visualization of Phospholipid Degradation by Outer Membrane Phospholipase A using High-Speed Atomic Force Microscopy"; Journal of Molecular Biology429 7 (2017) p.977-986

                22.Ren J., Zou Q.; "High-speed dynamic-mode atomic force microscopy imaging of polymers: an adaptive multiloop-mode approach"; Beilstein J. Nanotechnol. 8 (2017) p.1563-1570

                23.Ricci M., Trewby W., Cafolla C., Voïtchovsky K.; "Direct observation of the dynamics of single metal ions at the interface with solids in aqueous solutions"; Scientific Reports7 43234 (2017)

                24.Rigato A., Miyagi A., Scheuring S., Rico F.; "High-frequency microrheology reveals cytoskeleton dynamics in living cells"; Nature Physics(2017) DOI: 10.1038/NPHYS4104

                25.Ruan Y., Miyagi A., Wang X., Chami M., Boudker O., Scheuring S.; "Direct visualization of glutamate transporter elevator mechanism by high-speed AFM"; PNAS114 7 (2017) p.1584-1588

                26.Sadeghian H., Herfst R., Dekker B., Winters J., Bijnagte T., Rijnbeek R.; "High-throughput atomic force microscopes operating in parallel"; Review of Scientific Instruments88 033703 (2017)

                27.Sakiyama Y., Panatala R., Lim R.; "Structural Dynamics of the Nuclear Pore Complex"; Seminars in Cell and Developmental Biology(2017)

                28.Shibata M., Watanabe H., Uchihashi T., Ando T., Yasuda R.; "High-speed atomic force microscopy imaging of live mammalian cells"; Biophysics and PhysicobiologyVol. 14 (2017) p.127-135

                29.Terahara N., Kodera N., Uchihashi T., Ando T., Namba K., Minamino T.; "Na+-induced structural transition of MotPS for stator assembly of the Bacillus flagellar motor"; Science Advances3 11 eaao4119 (2017)

                30.Uchihashi T., Scheuring S.; "Applications of high-speed atomic force microscopy to real-time visualization of dynamic biomolecular processes"; Biochim Biophys Acta. (2017)

                31.Usukura E., Narita A., Yagi A., Sakai N., Uekusa Y., Imaoka Y., Ito S., Usukura J.; "A Cryosectioning Technique for the Observation of Intracellular Structures and Immunocytochemistry of Tissues in Atomic Force Microscopy (AFM)"; Scientific Reports7 (2017)

                32.Watanabe S., Ando T.; "High-speed XYZ-nanopositioner for scanning ion conductance microscopy"; Applied Physics Letters111 11 (2017)

                33. Watanabe-Nakayama T., Kodera N., Konno H., Ono K., Teplow D., Yamada M., Ando T.; "Nano-Space Video Imaging Reveals Structural Dynamics of Fibrous Protein Assembly and Relevant Enzymes"; Biophysical Journal112 3 (2017)

                34.Zhang Y., Tunuguntla R., Choi P., Noy A.; "Real-time dynamics of carbon nanotube porins in supported lipid membranes visualized by high-speed atomic force microscopy"; Philosophical Transactions of The Royal Society B Biological Sciences372 (2017)

                35.Zhang Y., Yoshida A., Sakai N., Uekusa Y., Kumeta M., Yoshimura S.; "In vivo dynamics of the cortical actin network revealed by fast-scanning atomic force microscopy" Microscopy 20 (2017) p.272-282


                部分用户列表:

                留言咨询
                姓名
                电话
                单位
                信箱
                留言内容
                提交留言
                联系我时,请说明是在教育装备采购网上看到的,谢谢!
                同类产品推荐