6分彩

  • <tr id='AHf2JV'><strong id='AHf2JV'></strong><small id='AHf2JV'></small><button id='AHf2JV'></button><li id='AHf2JV'><noscript id='AHf2JV'><big id='AHf2JV'></big><dt id='AHf2JV'></dt></noscript></li></tr><ol id='AHf2JV'><option id='AHf2JV'><table id='AHf2JV'><blockquote id='AHf2JV'><tbody id='AHf2JV'></tbody></blockquote></table></option></ol><u id='AHf2JV'></u><kbd id='AHf2JV'><kbd id='AHf2JV'></kbd></kbd>

    <code id='AHf2JV'><strong id='AHf2JV'></strong></code>

    <fieldset id='AHf2JV'></fieldset>
          <span id='AHf2JV'></span>

              <ins id='AHf2JV'></ins>
              <acronym id='AHf2JV'><em id='AHf2JV'></em><td id='AHf2JV'><div id='AHf2JV'></div></td></acronym><address id='AHf2JV'><big id='AHf2JV'><big id='AHf2JV'></big><legend id='AHf2JV'></legend></big></address>

              <i id='AHf2JV'><div id='AHf2JV'><ins id='AHf2JV'></ins></div></i>
              <i id='AHf2JV'></i>
            1. <dl id='AHf2JV'></dl>
              1. <blockquote id='AHf2JV'><q id='AHf2JV'><noscript id='AHf2JV'></noscript><dt id='AHf2JV'></dt></q></blockquote><noframes id='AHf2JV'><i id='AHf2JV'></i>
                教育装备采购网
                第六届图▲书馆论坛580*60

                MC1000藻类培养与监测系统文献列表

                教育装备采购网 2022-05-05 09:38 围观0次

                MC 1000 8通道藻类培养与在线监测系统文献列表

                (2020年-2022年2月)

                  1.Jia M,et al. 2022.The bHLH family NITROGEN-REPLETION INSENSITIVE1 represses nitrogen starvation-induced responses in Chlamydomonas reinhardtii. The Plant Journal. doi: 10.1111/tpj.15673.

                  2.Széles E, et al. 2022. Microfluidic Platforms Designed for Morphological and Photosynthetic Investigations of Chlamydomonas reinhardtiion a Single-Cell Level. Cells 11(2):285.

                  3.Pessi BA, et al. 2022. Does temperature shift justify microalgae production under greenhouse? Algal Research 61: 102579.

                  4.Ben-SA, Vonshak A. 2022. Tolerance to exogenously added ROS examined for correlation with enhanced specific growth rates of Arthrospira platensis. Journal of Applied Phycology. doi: 10.1007/s10811-022-02688-0.

                  5.Fettah N,et al. 2022. Effect of light on growth of green microalgae Scenedesmus quadricauda: influence of light intensity, light wavelength and photoperiods. International Journal of Energy and Environmental Engineering. doi:10.1007/s40095-021-00456-3.

                  6.Admirasari R, et al. 2022. Nutritive capability of anaerobically digested black water increases productivity of Tetradesmus obliquus: Domestic wastewater as an alternative nutrient resource. Bioresource Technology Reports 17: 100905.

                  7.Dann? M, et al. 2021. Enhancing photosynthesis at high light levels by adaptive laboratory evolution. Nature Plants 7: 681–695.

                  8.Huokko T, et al. 2021. Probing the biogenesis pathway and dynamics of thylakoid membranes. Nature Communications 12: 3475.

                  9.Lin JY, Ng IS. 2021. Production, isolation and characterization of C-phycocyanin from a new halo-tolerant Cyanobacterium aponinum using seawater. Bioresource technology 342: 125946.

                  10.Kona R, et al. 2021. Lutein and β-carotene biosynthesis in Scenedesmussp. SVMIICT1 through differential light intensities. Bioresource technology 341:125814.

                  11.Shabestary K, et al. 2021. Cycling between growth and production phases increases cyanobacteria bioproduction of lactate. Metabolic engineering 68: 131-141.

                  12.Sp?t P, et al. 2021. Alterations in the CO2availability induce alterations in the phosphoproteome of the cyanobacterium Synechocystissp. PCC 6803. New Phytologist 231: 1123-1137.

                  13.Billey E,et al. 2021. Characterization of the Bubblegum acyl-CoA synthetase of Microchloropsis gaditana. Plant Physiology 185(3): 815-835.

                  14.Bandyopadhyay A, et al. 2021. Antenna Modification Leads to Enhanced Nitrogenase Activity in a High Light-Tolerant Cyanobacterium. Mbio 12(6): e03408-21.

                  15.Chen H, et al. 2021. A Novel Mode of Photoprotection Mediated by a Cysteine Residue in the Chlorophyll Protein IsiA. mBio 12(1).

                  16.Liu X, et al. 2021. Chlorophyll fluorescence as a light signal enhances iron uptake by the marine diatom Phaeodactylum tricornutumunder high-cell density conditions. BMC biology 19(1): 1-15.

                  17.Cecchin M, et al. 2021. CO2supply modulates lipid remodelling, photosynthetic and respiratory activities in Chlorellaspecies. Plant, Cell & Environment 18(2): 431842.

                  18.Lin JY, et al. 2021. High-level production and extraction of C-phycocyanin from cyanobacteria Synechococcussp. PCC7002 for antioxidation, antibacterial and lead adsorption. Environmental Research 206: 112283.

                  19.Battaglino B, et al. 2021. Channeling Anabolic Side Products toward the Production of Nonessential Metabolites: Stable Malate Production in Synechocystissp. PCC6803. ACS Synthetic Biology 10(12): 3518-3526.

                  20.Ben SA, et al. 2021. Characterization of nannochloropsisoceanicarose bengal mutants sheds light on acclimation mechanisms to high light when grown in low temperature. Plant and Cell Physiology 62(9): 1478-1493.

                  21.Gachelin M, et al. 2021. Enhancing PUFA-rich polar lipids in Tisochrysis luteausing adaptive laboratory evolution (ALE) with oscillating thermal stress. Applied Microbiology and Biotechnology 105: 301-312.

                  22.Pivato M, et al. 2021. Heterologous expression of cyanobacterial Orange Carotenoid Protein (OCP2) as a soluble carrier of ketocarotenoids in Chlamydomonas reinhardtii. Algal Research 55(16):102255.

                  23.Busnel A, et al. 2021. Development and validation of a screening system for characterizing and modeling biomass production from cyanobacteria and microalgae: Application to Arthrospira platensisand Haematococcus pluvialis. Algal Research 58: 102386.

                  24.Guljamow A, et al. 2021. Diel Variations of Extracellular Microcystin Influence the Subcellular Dynamics of RubisCO in Microcystis aeruginosaPCC 7806. Microorganisms 9(6): 1265.

                  25.Barera S, et al. 2021. Effect of lhcsrgene dosage on oxidative stress and light use efficiency by Chlamydomonas reinhardtiicultures. Journal of Biotechnology 328: 0168-1656.

                  26.Canizales S, et al. 2021. Cyanobacterial growth and cyanophycin production with urea and ammonium as nitrogen source. Journal of Applied Phycology 33 (6): 3565-3577.

                  27.Dixit RB, et al. 2021. Secretomics:A Possible Biochemical Foot Printing Tool in Developing Microalgal Cultivation Strategies.World Journal of Microbiology and Biotechnology 37(11):1-11.

                  28.Zhao L, et al. 2020. Structural variability, coordination and adaptation of a native photosynthetic machinery. Nature Plants 6(7): 869–882.

                  29.Yao L,et al.. 2020. Pooled CRISPRi screening of the cyanobacterium Synechocystissp PCC 6803 for enhanced industrial phenotypes. Nature Communications 11(1): 1666.

                  30.Lfb A, et al. 2020. Metabolic engineering of Synechocystissp. PCC 6803 for the production of aromatic amino acids and derived phenylpropanoids. Metabolic Engineering 57:129-139.

                  31.Perozeni F, et al. 2020. Turning a green alga red: engineering astaxanthin biosynthesis by intragenic pseudogene revival in Chlamydomonas reinhardtii. Plant Biotechnology Journal 18(10) : 2053-2067.

                  32.Shrameeta S, et al. 2020. Glycogen Metabolism Supports Photosynthesis Start through the Oxidative Pentose Phosphate Pathway in Cyanobacteria1. Plant Physiology 182(1):507-517.

                  33.Flamholz AI,et al. 2020. Functional reconstitution of a bacterial CO2concentrating mechanism in Escherichia coli. eLife9: e59882.

                  34.Iasimone F, et al. 2020. Bioflocculation and settling studies of native wastewater filamentous cyanobacteria using different cultivation systems for a low-cost and easy to control harvesting process. Journal of Environmental Management 256(15): 109957.

                  35.Wu W, et al. 2020. Using osmotic stress to stabilize mannitol production in Synechocystissp. PCC6803. Biotechnology for Biofuels 13(1) : 879-891.

                  36.Cecchin M, et al. 2020. Improved lipid productivity in Nannochloropsisgaditana in nitrogen-replete conditions by selection of pale green mutants. Biotechnology for Biofuels 13(1): 1-14.

                  37.Nzayisenga, JC,et al. 2020. Effects of light intensity on growth and lipid production in microalgae grown in wastewater. Biotechnology for Biofuels 13(284): 1179-1184.

                  38.Gupta JK, et al. 2020. Overexpression of bicarbonate transporters in the marine cyanobacterium Synechococcussp. PCC 7002 increases growth rate and glycogen accumulation. Biotechnology for Biofuels 13(1): 1-12..

                  39.Sengupta S, et al. 2020. Metabolic engineering of a fast-growing cyanobacteriumSynechococcuselongatus PCC11801 for photoautotrophic production of succinic acid. Biotechnology for Biofuels 13(1): 539-554.

                  40.Kareya MS, et al. 2020. Photosynthetic Carbon Partitioning and Metabolic Regulation in Response to Very-Low and High CO2in Microchloropsis gaditanaNIES 2587. Frontiers in Plant Science 11: 981.

                  41.Alvarenga D, et al. 2020. AcnSP – A Novel Small Protein Regulator of Aconitase Activity in the Cyanobacterium Synechocystissp. PCC 6803. Frontiers in Microbiology 11: 1445.

                  42.Minhas AK, et al.2020. Microalga Scenedesmus bijugus: Biomass, lipid profile, and carotenoids production in vitro. Biomass and Bioenergy 142: 105749.

                  43.Alessandra B,et al. 2020. Photosynthesis Regulation in Response to Fluctuating Light in the Secondary Endosymbiont Alga Nannochloropsis gaditana. Plant & Cell Physiology 61(1): 41-52.

                  44.Ahmad A, et al. 2020. Biochemical Characteristics and a Genome-Scale Metabolic Model of an Indian Euryhaline Cyanobacterium with High Polyglucan Content. Metabolites10(5):177.

                  45.Sengupta A, et al. 2020. Photosynthetic Co-Production of Succinate and Ethylene in A Fast

                  -Growing Cyanobacterium, Synechococcus elongatusPCC 11801. Metabolites 10(6): 250.

                  46.Munz J, et al. 2020. Arginine-fed cultures generates triacylglycerol by triggering nitrogen starvation responses during robust growth in Chlamydomonas. Algal Research 46: 101782.

                  47.Weiner I, et al. 2020. CSO -A sequence optimization software for engineering chloroplast expression in Chlamydomonas reinhardtii. Algal Research 46: 101788.

                  48.Zhang B, et al. 2020. The carbonate concentration mechanism of Pyropia yezoensis(Rhodophyta): evidence from transcriptomics and biochemical data. BMC Plant Biology 20(1): 424.

                  49.Li YX,et al. 2020. Transcriptome analysis of carotenoid biosynthesis in Dunaliella salinaunder red and blue light. Journal of Oceanology and Limnology 38(1):177-185.

                  50.Dienst D,et al. (2020). High density cultivation for efficient sesquiterpenoid biosynthesis in Synechocystissp. PCC 6803. Scientific Reports10(1): 5932.

                  51.Pathania R, et al. 2020. Synechococcus elongatusBDU 130192, an Attractive Cyanobacterium for Feedstock Applications: Response to Culture Conditions. BioEnergy Research. 14(3): 954-963.

                  52.Varshney P, et al. 2020. Effect of elevated carbon dioxide and nitric oxide on the physiological responses of two green algae, Asterarcys quadricellulareand Chlorella sorokiniana. Journal of Applied Phycology 32(1): 189-204.

                  53.Vonshak A,et al. 2020. Photosynthetic characterization of two Nannochloropsisspecies and its relevance to outdoor cultivation. Journal of Applied Phycology 32(2): 909-922.

                  54.Akma C, et al. 2020. Two-phase method of cultivating Coelastrellaspecies for increased production of lipids and carotenoids. Bioresource Technology Reports 9: 100366.

                  55.Valev D,et al. 2020. Testing the Potential of Regulatory Sigma Factor Mutants for Wastewater Purification or Bioreactor Run in High Light. Current Microbiology 77(8) : 1590-1599.

                点击进入北京易科泰生态技术有限公司展台查】看更多 来源:教育装备采购网 作者:北京易科泰生态技术有限公司 责任编辑:逯红栋 我要投稿
                普教会专题840*100

                相关阅读

                • 陕西渭南市以“千园达标”为抓手加快学前普及普惠创建步伐
                  陕『西省教育厅04-21
                  2022年以来,陕西省渭@ 南市紧盯“教育强市”重点任务,按照学前教育普及普惠四个维度(普及普惠水平、政府保障情况、幼儿园保教质量、社会认可)要求,以“千园达标”为抓手,通过目标导向、问题...
                • 走进汉龙文献保护中心文︼献修复室

                  走进汉龙文献保护中心文献修复室
                  教育装备采购网03-15
                  汉龙文献保护中心正式成立于2016年,坐落在北京市历史底□蕴悠长、文化氛围浓厚的东城区炮局胡同,毗邻藏传佛〓教圣地雍和宫,占地面积五百平米。目前,汉...
                • 陇东学院举行王珏先生图书文献捐赠仪式

                  陇东学院举行王珏先生图书文献捐赠仪式
                  甘肃省教育厅10-13
                  10月9日,上海市艺术家王珏先生向∮陇东学院捐赠了《新民晚报》等珍贵文献。陇东学院党委◢书记曹复兴出席仪式并讲话,党委委员、副院长白生君主持仪式。王...
                • 数模整合技术确保档案信息长期安全保存

                  数模整合技术确保档案信息长期安全保存
                  教育装备采购网03-19
                  上世纪90年代后,随着我国计算机的全面普及和网络技术的发展,社会信息的传递方式也随之改变。档案馆顺应时代要求,采用“模转数”即先缩微后数字化的...
                • 缩微文献——让历史▲永久地“存活”

                  缩微文献——让历史永久地“存活”
                  教育装备采购网03-02
                  广东省立中山图书馆创建于1912年,是广东省级综合性公共图书馆、国家一级图书馆,也是文化信息资源共享工程广东』省分中心、广东省古籍保∏护中心、全国图...
                • 千锋教育1024程序员节 百城联动线下狂欢盛典圆满结束

                  千锋教育1024程序员节 百城联动线下狂欢盛典圆满结束
                  千锋教育10-28
                  2020年1024程序员节期间,千锋教育全国各地校区协同部分高校、企业联合展开“代码敲响世界”1024程序员节线下狂欢↙庆典活动,广大学员和高校学子积极响...
                • 千视NDI技术应用|外部SDI/HDMI信号如何输入电脑?
                  千视电子08-11
                  当您需要将外部摄像机、无人机、游戏机等SDI/HDMI视频源采集输入电脑,进行∑视频会议、或抖音/快手/淘宝/游戏等网络直播时,市场上有采集卡物理连线方案和NDI网络连线方案可选。采集卡方案需在电...
                • 助力AI“新基建” 千锋教育提供技术人才资源支持

                  助力AI“新基建” 千锋教育提供技术人才资源支持
                  千锋教育06-02
                  今年㊣ 的全国“两会”,工业互联网、数字经济、新型基础设施建设等成为频频被提及的热词,受到各行各业的广泛支持与关注。从2018年开始,国家就开始谋篇...

                版权与免责声↓明:

                ① 凡本网注明"来源:教育装备采购网"的所有作品,版权均属于教育装备采购网,未经本网授权不得转载、摘编或利用其它方式使用。已获本网授权的作品,应在授权范∞围内使用,并注明"来源:教育装备采购网"。违者本网将追究相关法律责任。

                ② 本网凡注∩明"来源:XXX(非本网)"的作品,均转载自其它媒体,转载目的在于☉传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、网站◥或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负※版权等法律责任。

                ③ 如涉及作品内容、版权等问题,请在作品发表之日起两周内与本网联系,否则视为放弃相关权利。

                2022云展会300*245